Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de documento
Intervalo de ano de publicação
1.
Front Genet ; 14: 1085024, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37144131

RESUMO

Genomics and genome editing promise enormous opportunities for crop improvement and elementary research. Precise modification in the specific targeted location of a genome has profited over the unplanned insertional events which are generally accomplished employing unadventurous means of genetic modifications. The advent of new genome editing procedures viz; zinc finger nucleases (ZFNs), homing endonucleases, transcription activator like effector nucleases (TALENs), Base Editors (BEs), and Primer Editors (PEs) enable molecular scientists to modulate gene expressions or create novel genes with high precision and efficiency. However, all these techniques are exorbitant and tedious since their prerequisites are difficult processes that necessitate protein engineering. Contrary to first generation genome modifying methods, CRISPR/Cas9 is simple to construct, and clones can hypothetically target several locations in the genome with different guide RNAs. Following the model of the application in crop with the help of the CRISPR/Cas9 module, various customized Cas9 cassettes have been cast off to advance mark discrimination and diminish random cuts. The present study discusses the progression in genome editing apparatuses, and their applications in chickpea crop development, scientific limitations, and future perspectives for biofortifying cytokinin dehydrogenase, nitrate reductase, superoxide dismutase to induce drought resistance, heat tolerance and higher yield in chickpea to encounter global climate change, hunger and nutritional threats.

2.
Sci Rep ; 12(1): 16315, 2022 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-36175531

RESUMO

Soil salinity affects various crop cultivation but legumes are the most sensitive to salinity. Osmotic stress is the first stage of salinity stress caused by excess salts in the soil on plants which adversely affects the growth instantly. The Trehalose-6-phosphate synthase (TPS) genes play a key role in the regulation of abiotic stresses resistance from the high expression of different isoform. Selected genotypes were evaluated to estimate for salt tolerance as well as genetic variability at morphological and molecular level. Allelic variations were identified in some of the selected genotypes for the TPS gene. A comprehensive analysis of the TPS gene from selected genotypes was conducted. Presence of significant genetic variability among the genotypes was found for salinity tolerance. This is the first report of allelic variation of TPS gene from chickpea and results indicates that the SNPs present in these conserved regions may contribute largely to functional distinction. The nucleotide sequence analysis suggests that the TPS gene sequences were found to be conserved among the genotypes. Some selected genotypes were evaluated to estimate for salt tolerance as well as for comparative analysis of physiological, molecular and allelic variability for salt responsive gene Trehalose-6-Phosphate Synthase through sequence similarity. Allelic variations were identified in some selected genotypes for the TPS gene. It is found that Pusa362, Pusa1103, and IG5856 are the most salt-tolerant lines and the results indicates that the identified genotypes can be used as a reliable donor for the chickpea improvement programs for salinity tolerance.


Assuntos
Cicer , Cicer/genética , Glucosiltransferases , Tolerância ao Sal/genética , Sais , Solo
3.
Sci Rep ; 11(1): 21837, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34750489

RESUMO

Chickpea (Cicer arietinum L.) is predominantly an indeterminate plant and tends to generate vegetative growth when the ambient is conducive for soil moisture, temperature and certain other environmental conditions. The semi-determinate (SDT) types are comparatively early, resistant to lodging and found to be similar in their yield potential to indeterminate (IDT) lines. Indeterminate and semi-determinate genotypes are found to be similar during early stage, which makes it difficult to distinguish between them. Thus, there is a need to identify molecular markers linked either to indeterminate or semi-determinate plant types. The present study was carried out to study the genetics of semi-determinacy and identify molecular markers linked to stem growth habit. The study was undertaken in the cross involving BG 362(IDT) × BG 3078-1(SDT). All F1 plants were indeterminate, which indicates that indeterminate stem type is dominant over semi-determinate. In further advancement to F2 generation, F2 plants are segregated in the ratio of 3(Indeterminate): 1(Semi-determinate) that indicates that the IDT and SDT parents which are involved in the cross differed for a single gene. The segregation pattern observed in F2 is confirmed in F3 generation. The parental polymorphic survey was undertaken for molecular analysis using total of 245 SSR markers, out of which 41 polymorphic markers were found to distinguish the parents and were utilized for bulked segregant analysis (BSA). The segregation pattern in F2 indicates that the IDT (Indeterminate) and SDT (Semi-determinate) parents which are involved in the cross differed for single gene. The segregation pattern of F2 and F3 derived from the cross BG 362 (IDT) × BG 3078-1 (SDT) confirmed the genotypic structure of the newly found SDT genotype BG 3078-1 as dt1dt1Dt2Dt2. Three SSR markers TA42, Ca_GPSSR00560 and H3DO5 were found to be putatively linked to Dt1 locus regulating IDT stem growth habit. Our results indicate that the SSR markers identified for Dt1 locus helps to differentiate stem growth habit of chickpea in its early growth stage itself and can be efficiently utilized in Marker Assisted Selection (MAS) for changed plant type in chickpea.


Assuntos
Cicer/genética , Cicer/classificação , Cicer/crescimento & desenvolvimento , DNA de Plantas/genética , Genes de Plantas , Marcadores Genéticos , Genótipo , Hibridização Genética , Repetições de Microssatélites , Caules de Planta/genética , Caules de Planta/crescimento & desenvolvimento , Polimorfismo Genético
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA