Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Cardiovasc Diabetol ; 23(1): 140, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664681

RESUMO

BACKGROUND: Diabetic vascular remodeling is the most important pathological basis of diabetic cardiovascular complications. The accumulation of advanced glycation end products (AGEs) caused by elevated blood glucose promotes the proliferation and migration of vascular smooth muscle cells (VSMCs), leading to arterial wall thickening and ultimately vascular remodeling. Therefore, the excessive proliferation and migration of VSMCs is considered as an important therapeutic target for vascular remodeling in diabetes mellitus. However, due to the lack of breakthrough in experiments, there is currently no effective treatment for the excessive proliferation and migration of VSMCs in diabetic patients. Bcl-2-associated athanogene 3 (BAG3) protein is a multifunctional protein highly expressed in skeletal muscle and myocardium. Previous research has confirmed that BAG3 can not only regulate cell survival and apoptosis, but also affect cell proliferation and migration. Since the excessive proliferation and migration of VSMCs is an important pathogenesis of vascular remodeling in diabetes, the role of BAG3 in the excessive proliferation and migration of VSMCs and its molecular mechanism deserve further investigation. METHODS: In this study, BAG3 gene was manipulated in smooth muscle to acquire SM22αCre; BAG3FL/FL mice and streptozotocin (STZ) was used to simulate diabetes. Expression of proteins and aortic thickness of mice were detected by immunofluorescence, ultrasound and hematoxylin-eosin (HE) staining. Using human aorta smooth muscle cell line (HASMC), cell viability was measured by CCK-8 and proliferation was measured by colony formation experiment. Migration was detected by transwell, scratch experiments and Phalloidin staining. Western Blot was used to detect protein expression and Co-Immunoprecipitation (Co-IP) was used to detect protein interaction. RESULTS: In diabetic vascular remodeling, AGEs could promote the interaction between BAG3 and signal transducer and activator of transcription 3 (STAT3), leading to the enhanced interaction between STAT3 and Janus kinase 2 (JAK2) and reduced interaction between STAT3 and extracellular signal-regulated kinase 1/2 (ERK1/2), resulting in accumulated p-STAT3(705) and reduced p-STAT3(727). Subsequently, the expression of matrix metallopeptidase 2 (MMP2) is upregulated, thus promoting the migration of VSMCs. CONCLUSIONS: BAG3 upregulates the expression of MMP2 by increasing p-STAT3(705) and decreasing p-STAT3(727) levels, thereby promoting vascular remodeling in diabetes. This provides a new orientation for the prevention and treatment of diabetic vascular remodeling.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Proteínas Reguladoras de Apoptose , Movimento Celular , Proliferação de Células , Músculo Liso Vascular , Miócitos de Músculo Liso , Fator de Transcrição STAT3 , Transdução de Sinais , Remodelação Vascular , Fator de Transcrição STAT3/metabolismo , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Animais , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas Reguladoras de Apoptose/genética , Fosforilação , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Angiopatias Diabéticas/metabolismo , Angiopatias Diabéticas/patologia , Angiopatias Diabéticas/fisiopatologia , Angiopatias Diabéticas/etiologia , Angiopatias Diabéticas/genética , Masculino , Células Cultivadas , Camundongos Knockout , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Humanos , Camundongos Endogâmicos C57BL , Produtos Finais de Glicação Avançada/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA