Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chem Soc Rev ; 53(13): 7091-7157, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38845536

RESUMO

Energy storage devices with high power and energy density are in demand owing to the rapidly growing population, and lithium-ion batteries (LIBs) are promising rechargeable energy storage devices. However, there are many issues associated with the development of electrode materials with a high theoretical capacity, which need to be addressed before their commercialization. Extensive research has focused on the modification and structural design of electrode materials, which are usually expensive and sophisticated. Besides, polymer binders are pivotal components for maintaining the structural integrity and stability of electrodes in LIBs. Polyvinylidene difluoride (PVDF) is a commercial binder with superior electrochemical stability, but its poor adhesion, insufficient mechanical properties, and low electronic and ionic conductivity hinder its wide application as a high-capacity electrode material. In this review, we highlight the recent progress in developing different polymeric materials (based on natural polymers and synthetic non-conductive and electronically conductive polymers) as binders for the anodes and cathodes in LIBs. The influence of the mechanical, adhesion, and self-healing properties as well as electronic and ionic conductivity of polymers on the capacity, capacity retention, rate performance and cycling life of batteries is discussed. Firstly, we analyze the failure mechanisms of binders based on the operation principle of lithium-ion batteries, introducing two models of "interface failure" and "degradation failure". More importantly, we propose several binder parameters applicable to most lithium-ion batteries and systematically consider and summarize the relationships between the chemical structure and properties of the binder at the molecular level. Subsequently, we select silicon and sulfur active electrode materials as examples to discuss the design principles of the binder from a molecular structure point of view. Finally, we present our perspectives on the development directions of binders for next-generation high-energy-density lithium-ion batteries. We hope that this review will guide researchers in the further design of novel efficient binders for lithium-ion batteries at the molecular level, especially for high energy density electrode materials.

2.
Angew Chem Int Ed Engl ; 63(19): e202319796, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38451050

RESUMO

The low specific capacity determined by the limited electron transfer of p-type cathode materials is the main obstruction to their application towards high-performance aqueous zinc-ion batteries (ZIBs). To overcome this challenge, boosting multi-electron transfer is essential for improving the charge storage capacity. Here, as a typical heteroaromatic p-type material, we unveil the unique reversible two-electron redox properties of phenoxazine in the aqueous electrolytes for the first time. The second oxidation process is stabilized in the aqueous electrolytes, a notable contrast to its less reversibility in the non-aqueous electrolytes. A comprehensive investigation of the redox chemistry mechanism demonstrates remarkably stable redox intermediates, including a stable cation radical PNO⋅+ characterized by effective electron delocalization and a closed-shell state dication PNO2+. Meanwhile, the heightened aromaticity contributes to superior structural stability during the redox process, distinguishing it from phenazine, which features a non-equivalent hybridized sp2-N motif. Leveraging these synergistic advantages, the PNO electrodes deliver a high capacity of 215 mAh g-1 compared to other p-type materials, and impressive long cycling stability with 100 % capacity retention over 3500 cycles. This work marks a crucial step forward in advanced organic electrodes based on multi-electron transfer phenoxazine moieties for high-performance aqueous ZIBs.

3.
Phys Chem Chem Phys ; 23(47): 26709-26720, 2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34842867

RESUMO

Polymer-based batteries that utilize organic electrode materials are considered viable candidates to overcome the common drawbacks of lithium-sulfur (Li-S) batteries. A promising cathode can be developed using a conductive, flexible, and free-standing polymer, poly(4-thiophen-3-yl)benzenethiol) (PTBT), as the sulfur host material. By a vulcanization process, sulfur is embedded into this polymer. Here, we present a combination of electronic structure theory and statistical mechanics to characterize the structure of the initial state of the charged cathode on an atomic level. We perform a stability analysis of differently sulfurized TBT dimers as the basic polymer unit calculated within density-functional theory (DFT) and combine this with a statistical binding model for the binding probability distributions of the vulcanization process. From this, we deduce sulfur chain length ("rank") distributions and calculate the average sulfur rank depending on the sulfur concentration and temperature. This multi-scale approach allows us to bridge the gap between the local description of the covalent bonding process and the derivation of the macroscopic properties of the cathode. Our calculations show that the main reaction of the vulcanization process leads to high-probability states of sulfur chains cross-linking TBT units belonging to different polymer backbones, with a dominant rank around n = 5. In contrast, the connection of adjacent TBT units of the same polymer backbone by a sulfur chain is the side reaction. These results are experimentally supported by Raman spectroscopy.

4.
ACS Appl Mater Interfaces ; 16(10): 12781-12792, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38415631

RESUMO

The traditional methods for creating oxygen vacancies in materials present several challenges and limitations, such as high preparation temperatures, limited oxygen vacancy generation, and morphological destruction, which hinder the application of transition metal oxides in the field of zinc-air batteries (ZABs). In order to address these limitations, we have introduced a pioneering lithium reduction strategy for generating oxygen vacancies in δ-MnO2@MXene composite materials. This strategy stands out for its simplicity of implementation, applicability at room temperature, and preservation of the material's structural integrity. This research demonstrates that aqueous Ov-MnO2@MXene-5, with introduced oxygen vacancies, exhibits an outstanding oxygen reduction reaction (ORR) activity with an ORR half-wave potential reaching 0.787 V. DFT calculations have demonstrated that the enhanced activity could be attributed to adjustments in the electronic structure and alterations in adsorption bond lengths. These adjustments result from the introduction of oxygen vacancies, which in turn promote electron transport and catalytic activity. In the context of zinc-air batteries, cells with Ov-MnO2@MXene-5 as the air cathode exhibit outstanding performance, featuring a significantly improved maximum power density (198.3 mW cm-2) and long-term cycling stability. Through the innovative strategy of introducing oxygen vacancies, this study has successfully enhanced the electrochemical catalytic performance of MnO2, overcoming the limitations associated with traditional methods for creating oxygen vacancies. Consequently, this research opens up new avenues and directions for nonprecious metal catalyst application in ZABs.

5.
ChemSusChem ; 15(14): e202200434, 2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35524709

RESUMO

Herein, the concept of constructing binder- and carbon additive-free organosulfur cathode was proved based on thiol-containing conducting polymer poly(4-(thiophene-3-yl) benzenethiol) (PTBT). The PTBT featured the polythiophene-structure main chain as a highly conducting framework and the benzenethiol side chain to copolymerize with sulfur and form a crosslinked organosulfur polymer (namely S/PTBT). Meanwhile, it could be in-situ deposited on the current collector by electro-polymerization, making it a binder-free and free-standing cathode for Li-S batteries. The S/PTBT cathode exhibited a reversible capacity of around 870 mAh g-1 at 0.1 C and improved cycling performance compared to the physically mixed cathode (namely S&PTBT). This multifunction cathode eliminated the influence of the additives (carbon/binder), making it suitable to be applied as a model electrode for operando analysis. Operando X-ray imaging revealed the remarkable effect in the suppression of polysulfides shuttle via introducing covalent bonds, paving the way for the study of the intrinsic mechanisms in Li-S batteries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA