Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 15(42): 18367-70, 2013 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-24080952

RESUMO

Cubic silver cages were prepared on monolithic activated carbon (MAC) pre-absorbed with Cl(-), SO4(2-), or PO4(3-) anions. Silver insoluble salts served as templates for the morphosynthesis of silver cages. The silver ions were reduced by reductive functional groups on MAC micropores through a galvanic cell reaction mechanism.

2.
Sci Rep ; 10(1): 4306, 2020 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-32152348

RESUMO

A facile and general method for the controllable synthesis of N-doped hollow mesoporous carbon nanocapsules (NHCNCs) with four different geometries has been developed. The spheres (NHCNC-1), low-concaves (NHCNC-2), semi-concaves (NHCNC-3) and wrinkles (NHCNC-4) shaped samples were prepared and systematically investigated to understand the structural effects of hollow particles on their supercapacitor performances. Compared with the other three different shaped samples (NHCNC-1, NHCNC-2, and NHCNC-4), the as-synthesized semi-concave structured NHCNC-3 demonstrated excellent performance with high gravimetric capacitance of 326 F g-1 (419 F cm-3) and ultra-stable cycling stability (96.6% after 5000 cycles). The outstanding performances achieved are attributed to the unique semi-concave structure, high specific surface area (1400 m2 g-1), hierarchical porosity, high packing density (1.41 g cm-3) and high nitrogen (N) content (up to 3.73%) of the new materials. These carbon nanocapsules with tailorable structures and properties enable them as outstanding carriers and platforms for various emerging applications, such as nanoscale chemical reactors, catalysis, batteries, solar energy harvest, gas storage and so on. In addition, these novel carbons have negligible cytotoxicity and high biocompatibility for human cells, promising a wide range of bio applications, such as biomaterials, drug delivery, biomedicine, biotherapy and bioelectronic devices.

3.
Sci Rep ; 5: 13587, 2015 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-26337008

RESUMO

Silver is one of the most important materials in plasmonics. Tuning the size of various silver nanostructures has been actively pursued in the last decade. However, silver nanobelt, a typical one-dimensional silver nanostructure, has not been systematically studied as to tuning its size for controllable plasmonic response. Here we show that silver nanobelts, with mean width ranging from 45 to 105 nm and thickness at ca. 13 nm, can grow abundantly on monolithic activated carbon (MAC) through a galvanic-cell reaction mechanism. The widths of silver nanobelts are positively correlated to the growth temperatures. The width/thickness ratio of the silver nanobelts can be adjusted so that their transversal plasmonic absorption peaks can nearly span the whole visible light band, which endows them with different colours. This work demonstrates the great versatility of a simple, green and conceptually novel approach in controlled synthesis of noble metal nanostructures.

4.
Sci Rep ; 3: 1511, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23515002

RESUMO

Design and fabrication of noble metal nanocrystals have attracted much attention due to their wide applications in catalysis, optical detection and biomedicine. However, it still remains a challenge to scale-up the production in a high-quality, low-cost and eco-friendly way. Here we show that single crystalline silver nanobelts grow abundantly on the surface of biomass-derived monolithic activated carbon (MAC), using [Ag(NH3)2]NO3 aqueous solution only. By varying the [Ag(NH3)2]NO3 concentration, silver nanoplates or nanoflowers can also be selectively obtained. The silver growth was illustrated using a galvanic-cell mechanism. The lowering of cell potential via using [Ag(NH3)2]⁺ precursor, together with the AgCl crystalline seed initiation, and the releasing of OH⁻ in the reaction process, create a stable environment for the self-compensatory growth of silver nanocrystals. Our work revealed the great versatility of a new type of template-directed galvanic-cell reaction for the controlled growth of noble metal nanocrystals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA