Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Arch Biochem Biophys ; 748: 109785, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37844826

RESUMO

Extracellular vesicular miRNAs (EV-miRNAs) play essential roles as intercellular communication molecules in knee Osteoarthritis (OA). We isolated cartilage-derived extracellular vesicles (EVs), to perform miRNA sequencing, which revealed EV-miRNA profiles and identified differentially expressed miRNAs (DE-miRNAs) between cartilage injury and cartilage non-injury groups. The target genes of known and novel DE-miRNAs were predicted with multiMiR package in 14 miRNA-target interaction databases. Meanwhile, single-cell RNA sequencing (scRNA-seq) was performed to identify chondrocyte clusters and their gene signatures in knee OA. Then we performed comparative analysis between target genes of the cartilage-derived EV-DE-miRNAs target genes and cluster-specific maker genes of characteristic chondrocyte clusters. Finally, the functional analysis of the cartilage-derived EVs DE-miRNA target genes and cluster-specific marker genes of each cell population were performed. The EV-miRNA profile analysis identified 13 DE-miRNAs and 7638 target genes. ScRNA-seq labelled seven clusters by cell type according to the expression of multiple characteristic markers. The results identified 735, 184, 303 and 879 common genes between EV-DE-miRNA target genes and cluster-specific marker genes in regulatory chondrocytes (RegCs), fibrocartilage chondrocytes (FC), prehypertrophic chondrocytes (PreHTCs) and mitochondrial chondrocytes (MTC), respectively. We firstly integrated the association between the cartilage-derived EV-DE-miRNA target genes and distinguished cluster-specific marker genes of each chondrocyte clusters. KEGG pathway analysis further identified that the DE-miRNAs target genes were significantly enriched in MAPK signaling pathway, Focal adhesion and FoxO signaling pathway. Our results provided some new insights into cartilage injury and knee OA pathogenesis which could improve the new diagnosis and treatment methods for OA.


Assuntos
Cartilagem Articular , Vesículas Extracelulares , MicroRNAs , Osteoartrite do Joelho , Humanos , Osteoartrite do Joelho/genética , Osteoartrite do Joelho/metabolismo , Osteoartrite do Joelho/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Análise da Expressão Gênica de Célula Única , Cartilagem Articular/metabolismo , Condrócitos/metabolismo , Vesículas Extracelulares/metabolismo
2.
Psychol Med ; 53(7): 3047-3055, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-35074039

RESUMO

BACKGROUND: Gut microbiome and dietary patterns have been suggested to be associated with depression/anxiety. However, limited effort has been made to explore the effects of possible interactions between diet and microbiome on the risks of depression and anxiety. METHODS: Using the latest genome-wide association studies findings in gut microbiome and dietary habits, polygenic risk scores (PRSs) analysis of gut microbiome and dietary habits was conducted in the UK Biobank cohort. Logistic/linear regression models were applied for evaluating the associations for gut microbiome-PRS, dietary habits-PRS, and their interactions with depression/anxiety status and Patient Health Questionnaire (PHQ-9)/Generalized Anxiety Disorder-7 (GAD-7) score by R software. RESULTS: We observed 51 common diet-gut microbiome interactions shared by both PHQ score and depression status, such as overall beef intake × genus Sporobacter [hurdle binary (HB)] (PPHQ = 7.88 × 10-4, Pdepression status = 5.86 × 10-4); carbohydrate × genus Lactococcus (HB) (PPHQ = 0.0295, Pdepression status = 0.0150). We detected 41 common diet-gut microbiome interactions shared by GAD score and anxiety status, such as sugar × genus Parasutterella (rank normal transformed) (PGAD = 5.15 × 10-3, Panxiety status = 0.0347); tablespoons of raw vegetables per day × family Coriobacteriaceae (HB) (PGAD = 6.02 × 10-4, Panxiety status = 0.0345). Some common significant interactions shared by depression and anxiety were identified, such as overall beef intake × genus Sporobacter (HB). CONCLUSIONS: Our study results expanded our understanding of how to comprehensively consider the relationships for dietary habits-gut microbiome interactions with depression and anxiety.


Assuntos
Microbioma Gastrointestinal , Microbiota , Animais , Bovinos , Humanos , Depressão/epidemiologia , Estudo de Associação Genômica Ampla , Comportamento Alimentar , Dieta , Transtornos de Ansiedade/epidemiologia , Ansiedade/epidemiologia
3.
Int J Mol Sci ; 24(5)2023 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-36902423

RESUMO

Oral submucosal fibrosis (OSF) is a chronic, progressive and potentially malignant oral disorder with a high regional incidence and malignant rate. With the development of the disease, the normal oral function and social life of patients are seriously affected. This review mainly introduces the various pathogenic factors and mechanisms of OSF, the mechanism of malignant transformation into oral squamous cell carcinoma (OSCC), and the existing treatment methods and new therapeutic targets and drugs. This paper summarizes the key molecules in the pathogenic and malignant mechanism of OSF, the miRNAs and lncRNAs with abnormal changes, and the natural compounds with therapeutic effects, which provides new molecular targets and further research directions for the prevention and treatment of OSF.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Fibrose Oral Submucosa , Humanos , Fibrose Oral Submucosa/patologia , Carcinoma de Células Escamosas/patologia , Neoplasias Bucais/patologia , Causalidade , Transformação Celular Neoplásica/patologia , Neoplasias de Cabeça e Pescoço/complicações
4.
Addict Biol ; 27(2): e13111, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34877740

RESUMO

BACKGROUND: Electronic devices use has been reported to be associated with depression. However, limited effort has been provided to elucidate the associations between electronic devices use and mental traits in interaction with genetic factors. METHODS: We first conducted an observational study consisting of 138 976-383 742 participants for TV watching, 29 636-38 599 participants for computer using and 118 61-330 985 participants for computer playing in the UK Biobank cohort. A linear regression model was used to evaluate the associations between common mental traits and electronic devices use. Subsequently, a genome-wide gene-environment interaction study (GWEIS) was performed by PLINK2.0 to estimate the interaction effects of genes and electronic devices use on the risks of the four mental traits. RESULTS: In the UK Biobank cohort, significant associations were observed between electronic devices use and mental traits (all P < 1.0 × 10-9 ), including depression score (B = 0.094 for TV watching), anxiety score (B = 0.051 for TV watching), cigarette smoking (B = 0.046 for computer using) and alcohol drinking (B = 0.010 for computer playing). GWEIS identified multiple mental traits associated loci, interacting with electronic devices use, such as DCDC2 (rs115986722, P = 4.10 × 10-10 ) for anxiety score and TV watching, PRKCE (rs56181965, P = 9.64 × 10-10 ) for smoking and computer using and FRMD4A (rs56227933, P = 7.42 × 10-11 ) for depression score and computer playing. CONCLUSIONS: Our findings suggested that electronic devices use was associated with common mental traits and provided new clues for understanding genetic architecture of mental traits.


Assuntos
Bancos de Espécimes Biológicos , Computadores , Interação Gene-Ambiente , Televisão , Jogos de Vídeo , Consumo de Bebidas Alcoólicas , Ansiedade , Fumar Cigarros , Depressão , Eletrônica , Estudo de Associação Genômica Ampla , Humanos , Reino Unido
5.
Brief Bioinform ; 20(6): 2291-2298, 2019 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-30169568

RESUMO

Genetic risk score (GRS, also known as polygenic risk score) analysis is an increasingly popular method for exploring genetic architectures and relationships of complex diseases. However, complex diseases are usually measured by multiple correlated phenotypes. Analyzing each disease phenotype individually is likely to reduce statistical power due to multiple testing correction. In order to conquer the disadvantage, we proposed a principal component analysis (PCA)-based GRS analysis approach. Extensive simulation studies were conducted to compare the performance of PCA-based GRS analysis and traditional GRS analysis approach. Simulation results observed significantly improved performance of PCA-based GRS analysis compared to traditional GRS analysis under various scenarios. For the sake of verification, we also applied both PCA-based GRS analysis and traditional GRS analysis to a real Caucasian genome-wide association study (GWAS) data of bone geometry. Real data analysis results further confirmed the improved performance of PCA-based GRS analysis. Given that GWAS have flourished in the past decades, our approach may help researchers to explore the genetic architectures and relationships of complex diseases or traits.


Assuntos
Predisposição Genética para Doença , Simulação por Computador , Estudo de Associação Genômica Ampla , Humanos , Fenótipo , Análise de Componente Principal
6.
Nanotechnology ; 32(1): 015708, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-32937609

RESUMO

In this paper, we used tannic acid (TA) functionalized carbon nanotubes (TCNTs), and silver nanowires (AgNWs) to construct a new type of transparent conductive film (TCF) with a double-layered conductive network structure. The hybrid film exhibits excellent light transmittance, high electrical conductivity, ultra-flexibility, and strong adhesion. These outstanding performances benefit from the filling and adhesion of hydrophilic TCNT layers to the AgNW networks. Besides, we introduced the post-treatment process of mechanical pressing and covering polymer conductive polymer PEDOT:PSS, which obtained three layers of TCNT/AgNW/PEDOT hybrid film and greatly improved the comprehensive properties. The hybrid film can reach a sheet resistance of 9.2 Ω sq-1 with a transmittance of 83.4% at 550 nm wavelength, and a low root mean square (RMS) roughness (approximately 3.8 nm). After 10 000 bends and tape testing, the conductivity and transmittance of the hybrid film remain stable. The resistance of the film has no significant degradation after 14 d of exposure to high temperature of 85 °C and humidity of 85%, indicating excellent stability. The organic light-emitting diodes (OLEDs) with TCNT/AgNW/PEDOT hybrid film as anode exhibit high current density and luminosity, confirming this process has considerable potential application in photovoltaic devices.

7.
Brief Bioinform ; 19(5): 725-730, 2018 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-28334273

RESUMO

Genome-wide association study (GWAS)-based pathway association analysis is a powerful approach for the genetic studies of human complex diseases. However, the genetic confounding effects of environment exposure-related genes can decrease the accuracy of GWAS-based pathway association analysis of target diseases. In this study, we developed a pathway association analysis approach, named Mendelian randomization-based pathway enrichment analysis (MRPEA), which was capable of correcting the genetic confounding effects of environmental exposures, using the GWAS summary data of environmental exposures. After analyzing the real GWAS summary data of cardiovascular disease and cigarette smoking, we observed significantly improved performance of MRPEA compared with traditional pathway association analysis (TPAA) without adjusting for environmental exposures. Further, simulation studies found that MRPEA generally outperformed TPAA under various scenarios. We hope that MRPEA could help to fill the gap of TPAA and identify novel causal pathways for complex diseases.


Assuntos
Exposição Ambiental/efeitos adversos , Exposição Ambiental/estatística & dados numéricos , Estudo de Associação Genômica Ampla/estatística & dados numéricos , Doenças Cardiovasculares/etiologia , Doenças Cardiovasculares/genética , Biologia Computacional/métodos , Simulação por Computador , Variação Genética , Humanos , Modelos Genéticos , Herança Multifatorial , Polimorfismo de Nucleotídeo Único , Fatores de Risco , Fumar/efeitos adversos , Fumar/genética
8.
Exp Cell Res ; 379(2): 140-149, 2019 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-30951708

RESUMO

To investigate the pathogenesis of Kashin-Beck disease (KBD), we compared the common signaling pathways in peripheral blood mononuclear cells (PBMCs) obtained from healthy juvenile and adults and KBD patients, and also from osteoarthritis (OA) patients. The PBMCs from 12 KBD and 12 healthy juvenile, and those from 20 adult KBD patients and 12 healthy donors were separately collected among the people living in the KBD endemic area. The patients were distinguished according to the national diagnosis criteria. Total RNAs were extracted for the determination of gene expressions by microarray analysis. Ingenuity Pathways Analysis (IPA) was employed to identify the signaling pathways significantly affected by juveniles' and adults' KBD, and OA. The expressions of NFκB-p65, cIAP2 and RANKL in the articular cartilage from both juvenile and adults were detected by immunohistochemistry. NF-κB signaling, apoptosis signaling, death receptor signaling and IL-6 signaling pathways were revealed to be the common affected signaling pathways in the juvenile and adult KBD and the OA. BIRC3 and EGR1 were identified as two common differentially expressed genes. The percentages of positive staining of NFκB-p65, cIAP2 and RANKL were reduced in adult KBD patients but significantly increased in juvenile KBD patients. NF-κB, one of the common signaling pathways between adult and juvenile KBD, was less prominent in the adult KBD patients.


Assuntos
Doença de Kashin-Bek/metabolismo , Leucócitos Mononucleares/metabolismo , NF-kappa B/metabolismo , Transdução de Sinais/fisiologia , Adolescente , Adulto , Apoptose/fisiologia , Cartilagem Articular/metabolismo , Humanos , Osteoartrite/metabolismo
9.
BMC Musculoskelet Disord ; 20(1): 78, 2019 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-30764809

RESUMO

BACKGROUND: Kashin-Beck disease (KBD) is a serious human endemic chronic osteochondral disease. However, quantitative syntheses of X-ray detective rate studies for KBD are rare. We performed an initial systematic review and meta-analysis to assess the X-ray detective rate of KBD in China. METHODS: For this systematic review and meta-analysis, we searched five databases (PubMed, Web of Science, Chinese National Knowledge Infrastructure (CNKI), WanFang Data and the China Science and Technology Journal Database (VIP))using a comprehensive search strategy to identify studies of KBD X-ray detective rate in China that were published from database inception to January 13, 2018. The X-ray detective rate of KBD was determined via an analysis of published studies using a random effect meta-analysis with the proportions approach. Subgroup analysis and meta-regression were used to explore heterogeneity, and study quality was assessed using the risk of bias tool. RESULTS: A total of 53 studies involving 14,039 samples with X-ray detective rate in 163,340 observations in total were included in this meta-analysis. These studies were geographically diverse (3 endemic areas). The pooled overall X-ray detective rate for KBD was 11% (95%CI,8-15%;Z = 13.14; p < 0.001). The pooled X-ray detective rate estimates were 11% (95%CI, 6-17%; Z = 7.06; p < 0.001) for northeast endemic areas, 13% (95%CI, 7-20%; Z = 7.45; p < 0.001) for northwest endemic areas, and 8% (95%CI, 5-12%; Z = 7.90; p < 0.001) for southwest endemic areas. There was a significant relationship between the survey year and the X-ray detective rate of KBD. CONCLUSIONS: Our systematic review found that the summary estimate of the X-ray detective rate of KBD was 11% and, that KBD X-ray positive rate ranged from 8.00 to 15.00% depending on the study. Further research is required to identify effective strategies for preventing and treating KBD.


Assuntos
Osso e Ossos/diagnóstico por imagem , Doenças Endêmicas , Doença de Kashin-Bek/diagnóstico por imagem , Radiografia/métodos , Adolescente , Criança , Pré-Escolar , China/epidemiologia , Feminino , Humanos , Doença de Kashin-Bek/epidemiologia , Masculino , Valor Preditivo dos Testes
10.
Exp Cell Res ; 361(1): 141-148, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29042209

RESUMO

Kashin-Beck disease (KBD), an endemic osteochondropathy, is characterized by cartilage degeneration which is caused by abnormal catabolism in the extracellular matrix (ECM). In this study, we investigated the expression of the Wnt/ß-catenin signaling pathway in KBD pathogenesis. Among the proteins involved in the Wnt/ß-catenin signaling pathway, WNT-3A, FZD1, SOX9, and ß-catenin were up-regulated, while FRZB was down-regulated in KBD cartilage. C28/I2 cells were evaluated for cell viability using the MTT assay after exposure to T-2 toxin, a suspicious environmental pathogenic factors of KBD. C28/I2 cells were treated with different intervening concentrations (0.001µg/mL,0.005µg/mL and 0.01µg/mL) of T-2 toxin for 24h. The expression of FZD1 and CTNNB1 (i.e.,ß-catenin) was significantly reduced and SOX9 expression was significantly increased in chondrocytes after treatment with different intervening concentrations of T-2 toxin. Our results indicate that alterations in the Wnt/ß-catenin signaling pathway in articular cartilage play an important role in the onset and pathogenesis of KBD.


Assuntos
Cartilagem Articular/patologia , Condrócitos/patologia , Regulação da Expressão Gênica/efeitos dos fármacos , Doença de Kashin-Bek/patologia , Toxina T-2/efeitos adversos , Proteínas Wnt/metabolismo , beta Catenina/metabolismo , Adolescente , Adulto , Cartilagem Articular/efeitos dos fármacos , Cartilagem Articular/metabolismo , Estudos de Casos e Controles , Células Cultivadas , Criança , Condrócitos/efeitos dos fármacos , Condrócitos/metabolismo , Feminino , Humanos , Doença de Kashin-Bek/induzido quimicamente , Doença de Kashin-Bek/metabolismo , Masculino , Pessoa de Meia-Idade , Proteínas Wnt/genética , beta Catenina/genética
11.
Int J Mol Sci ; 16(5): 11465-81, 2015 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-25997002

RESUMO

Kashin-Beck Disease (KBD) is an endemic osteochondropathy with an unknown pathogenesis. Diagnosis of KBD is effective only in advanced cases, which eliminates the possibility of early treatment and leads to an inevitable exacerbation of symptoms. Therefore, we aim to identify an accurate blood-based gene signature for the detection of KBD. Previously published gene expression profile data on cartilage and peripheral blood mononuclear cells (PBMCs) from adults with KBD were compared to select potential target genes. Microarray analysis was conducted to evaluate the expression of the target genes in a cohort of 100 KBD patients and 100 healthy controls. A gene expression signature was identified using a training set, which was subsequently validated using an independent test set with a minimum redundancy maximum relevance (mRMR) algorithm and support vector machine (SVM) algorithm. Fifty unique genes were differentially expressed between KBD patients and healthy controls. A 20-gene signature was identified that distinguished between KBD patients and controls with 90% accuracy, 85% sensitivity, and 95% specificity. This study identified a 20-gene signature that accurately distinguishes between patients with KBD and controls using peripheral blood samples. These results promote the further development of blood-based genetic biomarkers for detection of KBD.


Assuntos
Perfilação da Expressão Gênica , Doença de Kashin-Bek/genética , Transcriptoma , Adulto , Idoso , Feminino , Humanos , Doença de Kashin-Bek/patologia , Leucócitos Mononucleares/metabolismo , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase em Tempo Real/métodos
12.
ACS Appl Mater Interfaces ; 16(22): 29162-29176, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38785388

RESUMO

Smart-sensing coatings that exhibit multistimulus response, rapid indication, and reusability are in urgent need to effectively enhance the practicability of coatings while accurately detecting metal corrosion. In this work, a reusable corrosion self-reporting coating with multiple pH and Fe3+ stimulus responses was first constructed by the integration of a composite fluorescent probe into the resin matrix. This composite sensor was constructed by combining a lanthanide metal-organic framework (Ln-MOF) based on terbium and trimeric acid (H3BTC) with graphene oxide (GO) nanosheets (GO@Tb-BTC). The incorporation of GO formed a sea-urchin-like structure, thereby increasing the specific surface area and active sites of the probe. The coatings were characterized by using electrochemical impedance spectroscopy (EIS), visual observation, and fluorescence spectrophotometry. The surface morphology, wettability, and adhesion of the coating samples were analyzed using SEM, XPS, hydrostatic contact angle test, and an adhesion test. EIS measurements in 3.5 wt % NaCl solution for 72 h demonstrated the superior corrosion protection performance of the 0.3 wt %/GO@Tb-BTC/WEP coating compared to blank coating, with the charge-transfer resistance reaching 4.33 × 107 Ω·cm2, which was 9.5 times higher than that of the pure coating. The bright green fluorescence of GO@Tb-BTC/WEP coating exhibited a turn-off response when there was an excess of OH-/H+, but it demonstrated a reversible turn-on fluorescence when the ambient pH returned to neutral. Furthermore, such Fe3+-triggered fluorescence quenching responded to concentrations as low as 1 × 10-6 M. The fluorescence quenching rate of both intact and damaged coatings surpassed that of visual and EIS detection methods. Significantly, the fluorescence in scratches was effectively quenched within 25 min using 0.3 wt %/GO@Tb-BTC/WPU coating for visual observation. GO@Tb-BTC demonstrated exceptional corrosion self-reporting capabilities in both epoxy and polyurethane systems, making it a versatile option beyond single-coating applications.

13.
Biol Trace Elem Res ; 202(3): 1020-1030, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37326932

RESUMO

The aim of this study was to construct rat models of environmental risk factors for Kashin-Beck disease (KBD) with low selenium and T-2 toxin levels and to screen the differentially expressed genes (DEGs) between the rat models exposed to environmental risk factors. The Se-deficient (SD) group and T-2 toxin exposure (T-2) group were constructed. Knee joint samples were stained with hematoxylin-eosin, and cartilage tissue damage was observed. Illumina high-throughput sequencing technology was used to detect the gene expression profiles of the rat models in each group. Gene Ontology (GO) functional enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) signaling pathway enrichment analysis were performed and five differential gene expression results were verified by quantitative real-time polymerase chain reaction (qRT‒PCR). A total of 124 DEGs were identified from the SD group, including 56 upregulated genes and 68 downregulated genes. A total of 135 DEGs were identified in the T-2 group, including 68 upregulated genes and 67 downregulated genes. The DEGs were significantly enriched in 4 KEGG pathways in the SD group and 9 KEGG pathways in the T-2 group. The expression levels of Dbp, Pc, Selenow, Rpl30, and Mt2A were consistent with the results of transcriptome sequencing by qRT‒PCR. The results of this study confirmed that there were some differences in DEGs between the SD group and the T-2 group and provided new evidence for further exploration of the etiology and pathogenesis of KBD.


Assuntos
Cartilagem Articular , Doença de Kashin-Bek , Selênio , Toxina T-2 , Ratos , Animais , Condrócitos/metabolismo , Selênio/metabolismo , Toxina T-2/toxicidade , Cartilagem Articular/metabolismo , Articulação do Joelho/metabolismo , Doença de Kashin-Bek/metabolismo
14.
Toxicology ; 506: 153858, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38825033

RESUMO

This study aims to investigate the impact of T-2 toxin on the regulation of downstream target genes and signaling pathways through exosome-released miRNA in the development of cartilage damage in Kashin-Beck disease (KBD). Serum samples from KBD patients and supernatant from C28/I2 cells treated with T-2 toxin were collected for the purpose of comparing the differential expression of exosomal miRNA using absolute quantitative miRNA-seq. Target genes of differential exosomal miRNAs were identified using Targetscan and Miranda databases, followed by GO and KEGG enrichment analyses. Validation of key indicators of chondrocyte injury in KBD was conducted using Real-time quantitative PCR (RT-qPCR) and Immunohistochemical staining (IHC). A total of 20 exosomal miRNAs related to KBD were identified in serum, and 13 in chondrocytes (C28/I2). The identified exosomal miRNAs targeted 48,459 and 60,612 genes, primarily enriched in cell organelles and membranes, cell differentiation, and cytoskeleton in the serum, and the cytoplasm and nucleus, metal ion binding in chondrocyte (C28/I2). The results of the KEGG enrichment analysis indicated that the Ras signaling pathway may play a crucial role in the pathogenesis of KBD. Specifically, the upregulation of hsa-miR-181a-5p and hsa-miR-21-3p, along with the downregulation of hsa-miR-152-3p and hsa-miR-186-5p, were observed. Additionally, T-2 toxin intervention led to a significant downregulation of RALA, REL, and MAPK10 expression. Furthermore, the protein levels of RALA, REL, and MAPK10 were notably decreased in the superficial and middle layers of cartilage tissues from KBD. The induction of differential expression of chondrocyte exosomal miRNAs by T-2 toxin results in the collective regulation of target genes RALA, REL, and MAPK10, ultimately mediating the Ras signaling pathway and causing a disruption in chondrocyte extracellular matrix metabolism, leading to chondrocyte injury.

15.
Biol Trace Elem Res ; 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38907829

RESUMO

The objective of the present study was to evaluate hair levels of toxic and essential trace elements and minerals in male and female patients with chronic gout. A total of 223 examinees aged from 27 to 82 years old including 116 healthy controls (64 women and 52 men) and 107 patients with gout (56 women and 51 men) were enrolled in the current cross-sectional study. Analysis of hair toxic and essential trace element and mineral content was performed using inductively-coupled plasma mass-spectrometry. The obtained data demonstrate that hair B, Fe, I, and Mo levels in gout patients were 67%, 8%, 46%, and 21% higher in comparison to the respective control values. Hair Cr and V content in patients was more than twofold higher than in the controls. Hair Mg and Zn levels were found to be 34% and 11% lower when compared to the respective control values. Hair toxic metal and metalloid content was also significantly affected in gout patients. Specifically, hair Al, As, and Pb levels were 24%, 43%, and 33% higher in gout patients than in healthy controls, respectively. Analysis of covariance demonstrated that sex also had a significant influence on hair trace element and mineral levels in gout patients. Specifically, gout-associated overaccumulation of hair trace elements including was more profound in male than in female patients. It is assumed that trace element dysregulation may contribute to gout development and progression, especially in men. However, further studies are required to elucidate this association and the underlying molecular mechanisms.

16.
Psychiatr Genet ; 33(4): 152-159, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37222225

RESUMO

PURPOSE: This study aimed to investigate the associations between maternal smoking (MS) and education score in adult offspring. METHODS: To better understand this link, we performed a two-stage genome-wide by environment interaction studies (GWEIS) of MS and offspring education score in UK Biobank cohort. Specifically, 276 996 subjects from England were enrolled in the discovery study, while 24 355 subjects from Scotland and 14 526 subjects from Wales were enrolled in the replication study. GWEIS were conducted by PLINK 2.0 with MS used as an environmental risk factor. RESULTS: Significant GWEIS associations ( P  < 0.0001) between MS and offspring education score in both the discovery cohort and two replicate cohorts (Scotland population and Wales population) were identified. GWEIS identified 2 independent significant single nucleotide polymorphism-MS interaction, with one variant located in the chromosomal 16 (rs72768988, Position: 22,768,798, P  = 1.22 × 10 -8 , ß = 6.7662) and the other one located in 2q32.3 region (2 : 196424612_GT_G, Position: 196 424 612, 3.60 × 10 -9 , ß = -0.4721). CONCLUSION: Our results suggested 2q32.3 region and HECW2 gene could negatively moderate the influence of MS on offspring's educational status.


Assuntos
Bancos de Espécimes Biológicos , Interação Gene-Ambiente , Adulto , Humanos , Fumar/genética , Escolaridade , Estudo de Associação Genômica Ampla , Reino Unido , Ubiquitina-Proteína Ligases
17.
Psychiatr Genet ; 33(2): 59-68, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36924244

RESUMO

OBJECTIVES: In this study designed to investigate the effect of diet and gut microbiome on neuropsychiatric disorders, we explored the mechanisms of the interaction between diet and gut microbiome on the risk of neuroticism. METHODS: First, using the individual genotype data from the UK Biobank cohort (N = 306 165), we calculated the polygenic risk score (PRS) based on 814 dietary habits single nucleotide polymorphisms (SNPs), 21 diet compositions SNPs and 1001 gut microbiome SNPs, respectively. Gut microbiome and diet-associated SNPs were collected from three genome-wide association studies (GWAS), including the gut microbiome (N = 3890), diet compositions (over 235 000 subjects) and dietary habits (N = 449 210). The neuroticism score was calculated by 12 questions from the Eysenck Personality Inventory Neuroticism scale. Then, regression analysis was performed to evaluate the interaction effects between diet and the gut microbiome on the risk of neuroticism. RESULTS: Our studies demonstrated multiple candidate interactions between diet and gut microbiome, such as protein vs. Bifidobacterium (ß = 4.59 × 10-3; P = 9.45 × 10-3) and fat vs. Clostridia (ß = 3.67 × 10-3; P = 3.90 × 10-2). In addition, pieces of fresh fruit per day vs. Ruminococcus (ß = -5.79 × 10-3, P = 1.10 × 10-3) and pieces of dried fruit per day vs. Clostridiales (ß = -5.63 × 10-3, P = 1.49 × 10-3) were found to be negatively associated with neuroticism in fruit types. We also identified several positive interactions, such as tablespoons of raw vegetables per day vs. Veillonella (ß = 5.92 × 10-3, P = 9.21 × 10-4) and cooked vegetables per day vs. Acidaminococcaceae (ß = 5.69 × 10-3, P = 1.24 × 10-3). CONCLUSIONS: Our results provide novel clues for understanding the roles of diet and gut microbiome in the development of neuroticism.


Assuntos
Microbioma Gastrointestinal , Humanos , Microbioma Gastrointestinal/genética , Neuroticismo , Estudo de Associação Genômica Ampla , Bancos de Espécimes Biológicos , Dieta , Reino Unido
18.
Front Cell Dev Biol ; 11: 1083904, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36875769

RESUMO

Background: Kashin-Beck disease (KBD) is a deformed osteochondral disease with a chronic progression that is restrictively distributed in eastern Siberia, North Korea, and some areas of China, and selenium deficiency has been identified as an important factor in the pathogenesis of this disease in recent years. Objective: The aim of this study is to investigate the selenoprotein transcriptome in chondrocytes and define the contribution of selenoprotein to KBD pathogenesis. Methods: Three cartilage samples were collected from the lateral tibial plateau of adult KBD patients and normal controls paired by age and sex for real-time quantitative polymerase chain reaction (RT-qPCR) to detect the mRNA expression of 25 selenoprotein genes in chondrocytes. Six other samples were collected from adult KBD patients and normal controls. In addition, immunohistochemistry was used on four adolescent KBD samples and seven normal controls (IHC) to determine the expression of proteins screened by RT-qPCR results that had different gene levels. Results: Increased mRNA expression of GPX1 and GPX3 was observed in chondrocytes, and stronger positive staining was displayed in the cartilage from both adult and adolescent patients. The mRNA levels of DIO1, DIO2, and DIO3 were increased in KBD chondrocytes; however, the percentage of positive staining decreased in the KBD cartilage of adults. Conclusion: The selenoprotein transcriptome, mainly the glutathione peroxidase (GPX) and deiodinase (DIO) families were altered in KBD and might play a vital role in the pathogenesis of KBD.

19.
Mol Omics ; 19(2): 137-149, 2023 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-36508252

RESUMO

Kashin-Beck disease (KBD) is a serious, endemic chronic osteochondral disease characterized by symmetrical enlargement of the phalanges, brachydactyly, joint deformity, and even dwarfism. To investigate the urinary metabolomic profiles of KBD patients, we performed an untargeted metabolomics approach using liquid chromatography coupled with mass spectrometry (LC-MS). Adult urinary specimens were collected from 39 patients with KBD and 19 healthy subjects; the children's urinary specimens were collected from 5 patients with KBD, 25 suspected KBD cases and 123 healthy subjects in the KBD endemic area during a three consecutive year study. We identified 10 upregulated and 28 downregulated secondary level metabolites highly associated with aetiology and pathogenesis of KBD between adult KBD and adult controls. A total of 163, 967 and 795 metabolites were significantly different in the urine among children with KBD, suspected children with KBD cases and healthy child controls, respectively, for each year in three consecutive years. HT-2 toxin, Se-adenosylselenomethionine (AdoSeMet), the toxin T2 tetrol, and many kinds of amino acids were identified as differential metabolites in this study. Amino sugar and nucleotide sugar metabolism, fructose and mannose metabolism, arachidonic acid metabolism, D-glutamine and D-glutamate metabolism, ubiquinone and other terpenoid-quinone biosynthesis, and D-glutamine and D-glutamate metabolism were perturbed pathways in adult and child KBD patients. Our study provides new insight into the underlying mechanisms of KBD, and suggests that we should pay more attention to these differences in small-molecule metabolites and metabolic pathways in the environmental aetiology and pathogenesis of KBD.


Assuntos
Doença de Kashin-Bek , Criança , Humanos , Doença de Kashin-Bek/epidemiologia , Doença de Kashin-Bek/metabolismo , Ácido Glutâmico , Glutamina , Metabolômica
20.
Front Microbiol ; 14: 1153424, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37250055

RESUMO

Introduction: Osteoarthritis (OA) is a kind of chronic, degenerative disorder with unknown causes. In this study, we aimed to improve our understanding of the gut microbiota profile in patients with knee OA. Methods: 16S rDNA gene sequencing was performed to detect the gut microbiota in fecal samples collected from the patients with OA (n = 32) and normal control (NC, n = 57). Then the metagenomic sequencing was used to identify the genes or functions linked with gut microbial changes at the species level in the fecal samples from patients with OA and NC groups. Results: The Proteobacteria was identified as dominant bacteria in OA group. We identified 81 genera resulted significantly different in abundance between OA and NC. The abundance of Agathobacter, Ruminococcus, Roseburia, Subdoligranulum, and Lactobacillus showed significant decrease in the OA compared to the NC. The abundance of genera Prevotella_7, Clostridium, Flavonifractor and Klebsiella were increasing in the OA group, and the families Lactobacillaceae, Christensenellaceae, Clostridiaceae_1 and Acidaminococcaceae were increasing in the NC. The metagenomic sequencing showed that the abundance of Bacteroides stercoris, Bacteroides vulgatus and Bacteroides uniformis at the species level were significantly decreasing in the OA, and the abundance of Escherichia coli, Klebsiella pneumoniae, Shigella flexneri and Streptococcus salivarius were significantly increased in OA. Discussion: The results of our study interpret a comprehensive profile of the gut microbiota in patients with knee OA and offer the evidence that the cartilage-gut-microbiome axis could play a crucial role in underlying the mechanisms and pathogenesis of OA.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA