Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Ther ; 19(12): 2213-21, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21915100

RESUMO

The brain capillary endothelial cell (BCEC) is a major functional component of the blood-brain barrier and is an underlying factor in the pathophysiology of various diseases, including brain ischemia, multiple sclerosis, and neurodegenerative disorders. We examined gene silencing in BCECs by using endogenous lipoprotein to introduce short-interfering RNA (siRNA) in vivo. A cholesterol-conjugated 21/23-mer siRNA targeting organic anion transporter 3 (OAT3) mRNA (Chol-siOAT3) was intravenously injected into mice after its incorporation into extracted endogenous lipoproteins. Chol-siOAT3 was not delivered to neurons or glia, but was successfully delivered into BCECs and resulted in a significant reduction of OAT3 mRNA levels when injected after its incorporation into high-density lipoprotein (HDL). Efficient delivery was not achieved, however, when Chol-siOAT3 was injected without any lipoproteins, or after its incorporation into low-density lipoprotein (LDL). Investigations in apolipoprotein E (ApoE)-deficient and LDL receptor (LDLR)-deficient mice revealed that the uptake of HDL-containing Chol-siOAT3 was mainly mediated by ApoE and LDLR in mice. These findings indicate that siRNA can be delivered into BCECs in vivo by using endogenous lipoprotein, which could make this strategy useful as a new gene silencing therapy for diseases involving BCECs.


Assuntos
Encéfalo/metabolismo , Colesterol/metabolismo , Células Endoteliais/metabolismo , Lipoproteínas HDL/metabolismo , Lipoproteínas LDL/metabolismo , Transportadores de Ânions Orgânicos Sódio-Independentes/antagonistas & inibidores , RNA Interferente Pequeno/genética , Animais , Apolipoproteínas E/fisiologia , Barreira Hematoencefálica , Northern Blotting , Encéfalo/irrigação sanguínea , Sistemas de Liberação de Medicamentos , Ensaio de Desvio de Mobilidade Eletroforética , Feminino , Inativação Gênica , Técnicas Imunoenzimáticas , Injeções Intravenosas , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transportadores de Ânions Orgânicos Sódio-Independentes/genética , Transportadores de Ânions Orgânicos Sódio-Independentes/metabolismo , RNA Interferente Pequeno/administração & dosagem , Receptores de LDL/fisiologia
2.
PLoS One ; 10(12): e0143518, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26637123

RESUMO

Oxidative stress has a ubiquitous role in neurodegenerative diseases and oxidative damage in specific regions of the brain is associated with selective neurodegeneration. We previously reported that Alzheimer disease (AD) model mice showed decreased insulin-degrading enzyme (IDE) levels in the cerebrum and accelerated phenotypic features of AD when crossbred with alpha-tocopherol transfer protein knockout (Ttpa-/-) mice. To further investigate the role of chronic oxidative stress in AD pathophysiology, we performed DNA microarray analysis using young and aged wild-type mice and aged Ttpa-/- mice. Among the genes whose expression changed dramatically was Phospholipase A2 group 3 (Pla2g3); Pla2g3 was identified because of its expression profile of cerebral specific up-regulation by chronic oxidative stress in silico and in aged Ttpa-/- mice. Immunohistochemical studies also demonstrated that human astrocytic Pla2g3 expression was significantly increased in human AD brains compared with control brains. Moreover, transfection of HEK293 cells with human Pla2g3 decreased endogenous IDE expression in a dose-dependent manner. Our findings show a key role of Pla2g3 on the reduction of IDE, and suggest that cerebrum specific increase of Pla2g3 is involved in the initiation and/or progression of AD.


Assuntos
Envelhecimento/genética , Doença de Alzheimer/genética , Cérebro/metabolismo , Fosfolipases A2 do Grupo III/genética , Insulisina/genética , Doença de Alzheimer/metabolismo , Animais , Proteínas de Transporte/genética , Células Cultivadas , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Técnicas de Inativação de Genes , Fosfolipases A2 do Grupo III/metabolismo , Células HEK293 , Humanos , Camundongos , Análise de Sequência com Séries de Oligonucleotídeos , Especificidade de Órgãos , Estresse Oxidativo , Regulação para Cima
3.
Mol Ther Nucleic Acids ; 4: e220, 2015 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-25584900

RESUMO

We developed an efficient system for delivering short interfering RNA (siRNA) to the liver by using α-tocopherol conjugation. The α-tocopherol-conjugated siRNA was effective and safe for RNA interference-mediated gene silencing in vivo. In contrast, when the 13-mer LNA (locked nucleic acid)-DNA gapmer antisense oligonucleotide (ASO) was directly conjugated with α-tocopherol it showed markedly reduced silencing activity in mouse liver. Here, therefore, we tried to extend the 5'-end of the ASO sequence by using 5'-α-tocopherol-conjugated 4- to 7-mers of unlocked nucleic acid (UNA) as a "second wing." Intravenous injection of mice with this α-tocopherol-conjugated chimeric ASO achieved more potent silencing than ASO alone in the liver, suggesting increased delivery of the ASO to the liver. Within the cells, the UNA wing was cleaved or degraded and α-tocopherol was released from the 13-mer gapmer ASO, resulting in activation of the gapmer. The α-tocopherol-conjugated chimeric ASO showed high efficacy, with hepatic tropism, and was effective and safe for gene silencing in vivo. We have thus identified a new, effective LNA-DNA gapmer structure in which drug delivery system (DDS) molecules are bound to ASO with UNA sequences.

4.
Nat Commun ; 6: 7969, 2015 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-26258894

RESUMO

Antisense oligonucleotides (ASOs) are recognized therapeutic agents for the modulation of specific genes at the post-transcriptional level. Similar to any medical drugs, there are opportunities to improve their efficacy and safety. Here we develop a short DNA/RNA heteroduplex oligonucleotide (HDO) with a structure different from double-stranded RNA used for short interfering RNA and single-stranded DNA used for ASO. A DNA/locked nucleotide acid gapmer duplex with an α-tocopherol-conjugated complementary RNA (Toc-HDO) is significantly more potent at reducing the expression of the targeted mRNA in liver compared with the parent single-stranded gapmer ASO. Toc-HDO also improves the phenotype in disease models more effectively. In addition, the high potency of Toc-HDO results in a reduction of liver dysfunction observed in the parent ASO at a similar silencing effect. HDO technology offers a novel concept of therapeutic oligonucleotides, and the development of this molecular design opens a new therapeutic field.


Assuntos
Inativação Gênica/fisiologia , Ácidos Nucleicos Heteroduplexes/fisiologia , Oligonucleotídeos , alfa-Tocoferol/farmacologia , Animais , Apolipoproteínas B/genética , Apolipoproteínas B/metabolismo , Sequência de Bases , Gorduras na Dieta/administração & dosagem , Gorduras na Dieta/efeitos adversos , Humanos , Hipercolesterolemia/induzido quimicamente , Macaca fascicularis , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , alfa-Tocoferol/química
5.
J Med Dent Sci ; 60(1): 9-16, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23917958

RESUMO

The choroid plexus (CP) is present on the ventricular walls of the brain, produces cerebrospinal fluid (CSF), contains many blood vessels, and is a major functional component of the blood-CSF barrier. The CP is an important site in the pathophysiology of various neurological diseases, including Alzheimer's disease and meningeal amyloidosis. We performed gene silencing in the CP in vivo by using an antisense oligonucleotide (ASO). A short ASO of length 12 nucleotides was intravenously injected into rats. The ASO was not delivered to neurons or glia in the central nervous system, but was successfully delivered into the CP, and resulted in a significant reduction of endogenous target gene expression in epithelial cells within the CP. Although the mechanism of uptake of the ASO by the CP was not elucidated, the ASO bound to albumin in vivo, and the distribution of ASO delivery was similar to that of albumin delivery. These findings suggest that we inhibited target gene expression in the epithelial cells of the CP via albumin-ASO conjugates. This strategy should be useful for investigations of the function of CP, and for the development of new gene-silencing therapies for diseases with pathophysiology related to the CP.


Assuntos
Plexo Corióideo/metabolismo , Sistemas de Liberação de Medicamentos , Oligonucleotídeos Antissenso/administração & dosagem , Albuminas/metabolismo , Animais , Carbocianinas , Técnicas de Cultura de Células , Linhagem Celular , Células Epiteliais/metabolismo , Estudos de Viabilidade , Feminino , Corantes Fluorescentes , Inativação Gênica/efeitos dos fármacos , Marcação de Genes/métodos , Injeções Intravenosas , Camundongos , Camundongos Endogâmicos , Microscopia Confocal , Oligonucleotídeos/administração & dosagem , Oligonucleotídeos/genética , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Fosforotioatos/administração & dosagem , Oligonucleotídeos Fosforotioatos/genética , Ligação Proteica , Ratos , Ratos Endogâmicos F344 , Ratos Sprague-Dawley , Espectrometria de Fluorescência , Superóxido Dismutase/genética , Superóxido Dismutase-1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA