RESUMO
This article is part of the Dendritic Cell Guidelines article series, which provides a collection of state-of-the-art protocols for the preparation, phenotype analysis by flow cytometry, generation, fluorescence microscopy, and functional characterization of mouse and human dendritic cells (DC) from lymphoid organs and various non-lymphoid tissues. Recent studies have provided evidence for an increasing number of phenotypically distinct conventional DC (cDC) subsets that on one hand exhibit a certain functional plasticity, but on the other hand are characterized by their tissue- and context-dependent functional specialization. Here, we describe a selection of assays for the functional characterization of mouse and human cDC. The first two protocols illustrate analysis of cDC endocytosis and metabolism, followed by guidelines for transcriptomic and proteomic characterization of cDC populations. Then, a larger group of assays describes the characterization of cDC migration in vitro, ex vivo, and in vivo. The final guidelines measure cDC inflammasome and antigen (cross)-presentation activity. While all protocols were written by experienced scientists who routinely use them in their work, this article was also peer-reviewed by leading experts and approved by all co-authors, making it an essential resource for basic and clinical DC immunologists.
RESUMO
Activating mutations in the human KIT receptor is known to drive severe hematopoietic disorders and tumor formation spanning various entities. The most common mutation is the substitution of aspartic acid at position 816 to valine (D816V), rendering the receptor constitutively active independent of ligand binding. As the role of the KIT receptor in placental signaling cascades is poorly understood, we analyzed the impact of KITD816V expression on placental development using a humanized mouse model. Placentas from KITD816V animals present with a grossly changed morphology, displaying a reduction in labyrinth and spongiotrophoblast layer and an increase in the Parietal Trophoblast Giant Cell (P-TGC) layer. Elevated differentiation to P-TGCs was accompanied with reduced differentiation to other Trophoblast Giant Cell (TGC) subtypes and by severe decrease in proliferation. The embryos display growth retardation and die in utero. KITD816V-trophoblast stem cells (TSC) differentiate much faster compared to wild type (WT) controls. In undifferentiated KITD816V-TSCs, levels of Phosphorylated Extracellular-signal Regulated Kinase (P-ERK) and Phosphorylated Protein Kinase B (P-AKT) are comparable to wildtype cultures differentiating for 3-6 days. Accordingly, P-TGC markers Placental Lactogen 1 (PL1) and Proliferin (PLF) are upregulated as well. The results reveal that KIT signaling orchestrates the fine-tuned differentiation of the placenta, with special emphasis on P-TGC differentiation. Appropriate control of KIT receptor action is therefore essential for placental development and nourishment of the embryo.
Assuntos
Proteínas Homeobox A10/genética , Placentação/genética , Prolactina/genética , Proteínas Proto-Oncogênicas c-kit/genética , Trofoblastos/metabolismo , Animais , Feminino , Regulação da Expressão Gênica no Desenvolvimento/genética , Humanos , Sistema de Sinalização das MAP Quinases/genética , Camundongos , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Placenta/metabolismo , Lactogênio Placentário/genética , Gravidez , Proteínas Proto-Oncogênicas c-akt/genética , Trofoblastos/patologiaRESUMO
The mannose receptor is a member of the C-type lectin (CLEC) family, which can bind and internalize a variety of endogenous and pathogen-associated ligands. Because of these properties, its role in endocytosis as well as antigen processing and presentation has been studied intensively. Recently, it became clear that the mannose receptor can directly influence the activation of various immune cells. Cell-bound mannose receptor expressed by antigen-presenting cells was indeed shown to drive activated T cells towards a tolerogenic phenotype. On the other hand, serum concentrations of a soluble form of the mannose receptor have been reported to be increased in patients suffering from a variety of inflammatory diseases and to correlate with severity of disease. Interestingly, we recently demonstrated that the soluble mannose receptor directly promotes macrophage proinflammatory activation and trigger metaflammation. In this review, we highlight the role of the mannose receptor and other CLECs in regulating the activation of immune cells and in shaping inflammatory responses.