Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(23)2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36499489

RESUMO

Edentulism is the condition of having lost natural teeth, and has serious social, psychological, and emotional consequences. The need for implant services in edentulous patients has dramatically increased during the last decades. In this study, the effects of concentrated growth factor (CGF), an autologous blood-derived biomaterial, in improving the process of osseointegration of dental implants have been evaluated. Here, permeation of dental implants with CGF has been obtained by using a Round up device. These CGF-coated dental implants retained a complex internal structure capable of releasing growth factors (VEGF, TGF-ß1, and BMP-2) and matrix metalloproteinases (MMP-2 and MMP-9) over time. The CGF-permeated implants induced the osteogenic differentiation of human bone marrow stem cells (hBMSC) as confirmed by matrix mineralization and the expression of osteogenic differentiation markers. Moreover, CGF provided dental implants with a biocompatible and biologically active surface that significantly improved adhesion of endothelial cells on CGF-coated implants compared to control implants (without CGF). Finally, data obtained from surgical interventions with CGF-permeated dental implants presented better results in terms of optimal osseointegration and reduced post-surgical complications. These data, taken together, highlight new and interesting perspectives in the use of CGF in the dental implantology field to improve osseointegration and promote the healing process.


Assuntos
Implantes Dentários , Osteogênese , Humanos , Células Endoteliais , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Osseointegração , Propriedades de Superfície , Titânio/farmacologia , Materiais Revestidos Biocompatíveis/farmacologia
2.
Int J Mol Sci ; 22(16)2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34445573

RESUMO

Concentrated Growth Factors (CGF) represent new autologous (blood-derived biomaterial), attracting growing interest in the field of regenerative medicine. In this study, the chemical, structural, and biological characterization of CGF was carried out. CGF molecular characterization was performed by GC/MS to quantify small metabolites and by ELISA to measure growth factors and matrix metalloproteinases (MMPs) release; structural CGF characterization was carried out by SEM analysis and immunohistochemistry; CGF has been cultured, and its primary cells were isolated for the identification of their surface markers by flow cytometry, Western blot, and real-time PCR; finally, the osteogenic differentiation of CGF primary cells was evaluated through matrix mineralization by alizarin red staining and through mRNA quantification of osteogenic differentiation markers by real-time PCR. We found that CGF has a complex inner structure capable of influencing the release of growth factors, metabolites, and cells. These cells, which could regulate the production and release of the CGF growth factors, show stem features and are able to differentiate into osteoblasts producing a mineralized matrix. These data, taken together, highlight interesting new perspectives for the use of CGF in regenerative medicine.


Assuntos
Diferenciação Celular , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Osteoblastos/citologia , Osteogênese , Células-Tronco/citologia , Proliferação de Células , Células Cultivadas , Feminino , Humanos , Masculino , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo
3.
Bioengineering (Basel) ; 10(10)2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37892852

RESUMO

The advancement achieved in Tissue Engineering is based on a careful and in-depth study of cell-tissue interactions. The choice of a specific biomaterial in Tissue Engineering is fundamental, as it represents an interface for adherent cells in the creation of a microenvironment suitable for cell growth and differentiation. The knowledge of the biochemical and biophysical properties of the extracellular matrix is a useful tool for the optimization of polymeric scaffolds. This review aims to analyse the chemical, physical, and biological parameters on which are possible to act in Tissue Engineering for the optimization of polymeric scaffolds and the most recent progress presented in this field, including the novelty in the modification of the scaffolds' bulk and surface from a chemical and physical point of view to improve cell-biomaterial interaction. Moreover, we underline how understanding the impact of scaffolds on cell fate is of paramount importance for the successful advancement of Tissue Engineering. Finally, we conclude by reporting the future perspectives in this field in continuous development.

4.
J Fungi (Basel) ; 9(9)2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37755026

RESUMO

Biopolymer-based formulations show great promise in enhancing the effectiveness of entomopathogenic fungi as bioinsecticides. Chitosan and starch, among other biopolymers, have been utilized to improve spore delivery, persistence, and adherence to target insects. These formulations offer advantages such as target specificity, eco-friendliness, and sustainability. However, challenges related to production costs, stability, and shelf life need to be addressed. Recently, biomimetic lure and kill approaches based on biopolymers offer cost-effective solutions by leveraging natural attractants. Further research is needed to optimize these formulations and overcome challenges. Biopolymer-based formulations have the potential to revolutionize pest control practices, providing environmentally friendly and sustainable solutions for agriculture.

5.
Biology (Basel) ; 12(11)2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37998003

RESUMO

In recent years, the enormous demand for swabs for clinical use has promoted their relevance and, consequently, brought the environmental issues due to their single use and lack of biodegradability to the attention of the healthcare industry. Swabs consist of a stick that facilitates their easy handling and manoeuvrability even in complex districts and an absorbent tip designed to uptake and release biological samples. In this study, we focused on the fabrication of an innovative biodegradable poly(vinyl alcohol) (PVA) nanofiber swab tip using the electrospinning technique. The innovative swab tip obtained showed comparable uptake and release capacity of protein and bacterial species (Pseudomonas aeruginosa and Staphylococcus aureus) with those of the commercial foam-type swab. In this way, the obtained swab can be attractive and suitable to fit into this panorama due to its low-cost process, easy scalability, and good uptake and release capabilities.

6.
Pharmaceutics ; 15(12)2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38140066

RESUMO

Periodontitis is a global, multifaceted, chronic inflammatory disease caused by bacterial microorganisms and an exaggerated host immune response that not only leads to the destruction of the periodontal apparatus but may also aggravate or promote the development of other systemic diseases. The periodontium is composed of four different tissues (alveolar bone, cementum, gingiva, and periodontal ligament) and various non-surgical and surgical therapies have been used to restore its normal function. However, due to the etiology of the disease and the heterogeneous nature of the periodontium components, complete regeneration is still a challenge. In this context, guided tissue/bone regeneration strategies in the field of tissue engineering and regenerative medicine have gained more and more interest, having as a goal the complete restoration of the periodontium and its functions. In particular, the use of electrospun nanofibrous scaffolds has emerged as an effective strategy to achieve this goal due to their ability to mimic the extracellular matrix and simultaneously exert antimicrobial, anti-inflammatory and regenerative activities. This review provides an overview of periodontal regeneration using electrospun membranes, highlighting the use of these nanofibrous scaffolds as delivery systems for bioactive molecules and drugs and their functionalization to promote periodontal regeneration.

7.
Biology (Basel) ; 12(4)2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-37106729

RESUMO

The application of scaffolding materials together with stem cell technologies plays a key role in tissue regeneration. Therefore, in this study, CGF (concentrated growth factor), which represents an autologous and biocompatible blood-derived product rich in growth factors and multipotent stem cells, was used together with a hydroxyapatite and silicon (HA-Si) scaffold, which represents a very interesting material in the field of bone reconstructive surgery. The aim of this work was to evaluate the potential osteogenic differentiation of CGF primary cells induced by HA-Si scaffolds. The cellular viability of CGF primary cells cultured on HA-Si scaffolds and their structural characterization were performed by MTT assay and SEM analysis, respectively. Moreover, the matrix mineralization of CGF primary cells on the HA-Si scaffold was evaluated through Alizarin red staining. The expression of osteogenic differentiation markers was investigated through mRNA quantification by real-time PCR. We found that the HA-Si scaffold was not cytotoxic for CGF primary cells, allowing their growth and proliferation. Furthermore, the HA-Si scaffold was able to induce increased levels of osteogenic markers, decreased levels of stemness markers in these cells, and the formation of a mineralized matrix. In conclusion, our results suggest that HA-Si scaffolds can be used as a biomaterial support for CGF application in the field of tissue regeneration.

8.
Genes (Basel) ; 14(9)2023 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-37761809

RESUMO

The goal of regenerative medicine is to achieve tissue regeneration. In the past, commonly used techniques included autologous or allogeneic transplantation and stem cell therapy, which have limitations, such as a lack of donor sites in the case of autologous transplantation and the invasiveness of stem cell harvesting. In recent years, research has, therefore, focused on new and less invasive strategies to achieve tissue regeneration. A step forward in this direction has been made with the development of autologous platelet concentrates (APCs), which are derived from the patient's own blood. They can be classified into three generations: platelet-rich plasma (PRP), platelet-rich fibrin (PRF), and concentrated growth factors (CGFs). These APCs have different structural characteristics, depending on the distinctive preparation method, and contain platelets, leukocytes, and multiple growth factors, including those most involved in regenerative processes. The purpose of this review is to clarify the most used techniques in the field of regenerative medicine in recent years, comparing the different types of APCs and analyzing the preparation protocols, the composition of the growth factors, the level of characterization achieved, and their clinical applications to date.


Assuntos
Plasma Rico em Plaquetas , Medicina Regenerativa , Humanos , Plaquetas , Leucócitos , Transplante de Células-Tronco
9.
Connect Tissue Res ; 53(6): 548-54, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22800469

RESUMO

Maxillofacial, orthopedic, oral, and plastic surgery require materials for tissue augmentation, guided regeneration, and tissue engineering approaches. In this study, the aim was to develop and characterize a new extrudable hydrogel, based on agarose gel (AG; 1.5% wt) and to evaluate the local effects after subcutaneous implantation in comparison with collagen and hyaluronic acid. AG chemical-physical properties were ascertained through Fourier transform infrared (FT-IR) spectroscopy and rheological analysis. In vivo subcutaneous implants were performed, and histological and histomorphometric evaluations were done at 1, 4, 12, and 16 weeks. FT-IR confirmed that spectroscopic properties were the same for the baseline agarose and rheological characterization established that AG is a weak hydrogel. Subcutaneous AG implants induced new vessels and fibrous tissue formation rich in neutrophils; the capsule thickness around AG increased until the 12th week but remained thinner than those around hyaluronic acid and collagen. At 16 weeks, the thickness of the capsule significantly decreased around all materials. This study confirmed that 1.5% wt AG possesses some of the most important features of the ideal biocompatible material: safety, effectiveness, costless, and easily obtained with specific chemical and geometrical characters; the AG can represent a finely controllable and biodegradable polymeric system for cells and drug delivery applications.


Assuntos
Implantes Absorvíveis , Hidrogéis/farmacologia , Teste de Materiais/métodos , Sefarose/farmacologia , Alicerces Teciduais , Animais , Hidrogéis/química , Masculino , Ratos , Ratos Sprague-Dawley , Sefarose/química , Engenharia Tecidual/métodos
10.
Front Bioeng Biotechnol ; 9: 631177, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33614615

RESUMO

In the field of bone tissue regeneration, the development of osteoconductive and osteoinductive scaffolds is an open challenge. The purpose of this work was the design and characterization of composite structures made of hydroxyapatite scaffold impregnated with a collagen slurry in order to mimic the bone tissue structure. The effect of magnesium and silicon ions enhancing both mechanical and biological properties of partially substituted hydroxyapatite were evaluated and compared with that of pure hydroxyapatite. The use of an innovative freeze-drying approach was developed, in which composite scaffolds were immersed in cold water, frozen and then lyophilized, thereby creating an open-pore structure, an essential feature for tissue regeneration. The mechanical stability of bone scaffolds is very important in the first weeks of slow bone regeneration process. Therefore, the biodegradation behavior of 3D scaffolds was evaluated by incubating them for different periods of time in Tris-HCl buffer. The microstructure observation, the weight loss measurements and mechanical stability up to 28 days of incubation (particularly for HA-Mg_Coll scaffolds), revealed moderate weight loss and mechanical performances reduction due to collagen dissolution. At the same time, the presence of collagen helps to protect the ceramic structure until it degrades. These results, combined with MTT tests, confirm that HA-Mg_Coll scaffolds may be the suitable candidate for bone remodeling.

11.
Materials (Basel) ; 14(22)2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34832344

RESUMO

Magnesium (Mg)- and silicon (Si)-substituted hydroxyapatite (HA) scaffolds were synthesized using the sponge replica method. The influence of Mg2+ and SiO44- ion substitution on the microstructural, mechanical and biological properties of HA scaffolds was evaluated. All synthesized scaffolds exhibited porosity >92%, with interconnected pores and pore sizes ranging between 200 and 800 µm. X-ray diffraction analysis showed that ß-TCP was formed in the case of Mg substitution. X-ray fluorescence mapping showed a homogeneous distribution of Mg and Si ions in the respective scaffolds. Compared to the pure HA scaffold, a reduced grain size was observed in the Mg- and Si-substituted scaffolds, which greatly influenced the mechanical properties of the scaffolds. Mechanical tests revealed better performance in HA-Mg (0.44 ± 0.05 MPa), HA-Si (0.64 ± 0.02 MPa) and HA-MgSi (0.53 ± 0.01 MPa) samples compared to pure HA (0.2 ± 0.01 MPa). During biodegradability tests in Tris-HCl, slight weight loss and a substantial reduction in mechanical performances of the scaffolds were observed. Cell proliferation determined by the MTT assay using hBMSC showed that all scaffolds were biocompatible, and the HA-MgSi scaffold seemed the most effective for cell adhesion and proliferation. Furthermore, ALP activity and osteogenic marker expression analysis revealed the ability of HA-Si and HA-MgSi scaffolds to promote osteoblast differentiation.

12.
Pharmaceutics ; 13(5)2021 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-33946931

RESUMO

Blood-derived concentrated growth factors (CGFs) represent a novel autologous biomaterial with promising applications in regenerative medicine. Angiogenesis is a key factor in tissue regeneration, but the role played by CGFs in vessel formation is not clear. The purpose of this study was to characterize the angiogenic properties of CGFs by evaluating the effects of its soluble factors and cellular components on the neovascularization in an in vitro model of angiogenesis. CGF clots were cultured for 14 days in cell culture medium; after that, CGF-conditioned medium (CGF-CM) was collected, and soluble factors and cellular components were separated and characterized. CGF-soluble factors, such as growth factors (VEGF and TGF-ß1) and matrix metalloproteinases (MMP-2 and -9), were assessed by ELISA. Angiogenic properties of CGF-soluble factors were analyzed by stimulating human cultured endothelial cells with increasing concentrations (1%, 5%, 10%, or 20%) of CGF-CM, and their effect on cell migration and tubule-like formation was assessed by wound healing and Matrigel assay, respectively. The expression of endothelial angiogenic mediators was determined using qRT-PCR and ELISA assays. CGF-derived cells were characterized by immunostaining, qRT-PCR and Matrigel assay. We found that CGF-CM, consisting of essential pro-angiogenic factors, such as VEGF, TGF-ß1, MMP-9, and MMP-2, promoted endothelial cell migration; tubule structure formation; and endothelial expression of multiple angiogenic mediators, including growth factors, chemokines, and metalloproteinases. Moreover, we discovered that CGF-derived cells exhibited features such as endothelial progenitor cells, since they expressed the CD34 stem cell marker and endothelial markers and participated in the neo-angiogenic process. In conclusion, our results suggest that CGFs are able to promote endothelial angiogenesis through their soluble and cellular components and that CGFs can be used as a biomaterial for therapeutic vasculogenesis in the field of tissue regeneration.

13.
J Healthc Eng ; 2018: 3651480, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30538809

RESUMO

This work explored the use of chitosan (Cs) and poly(ethylene oxide) (PEO) blends for the fabrication of electrospun fiber-orientated meshes potentially suitable for engineering fiber-reinforced soft tissues such as tendons, ligaments, or meniscus. To mimic the fiber alignment present in native tissue, the CS/PEO blend solution was electrospun using a traditional static plate, a rotating drum collector, and a rotating disk collector to get, respectively, random, parallel, circumferential-oriented fibers. The effects of the different orientations (parallel or circumferential) and high-speed rotating collector influenced fiber morphology, leading to a reduction in nanofiber diameters and an improvement in mechanical properties.


Assuntos
Quitosana/química , Técnicas Eletroquímicas/métodos , Nanofibras/química , Nanofibras/ultraestrutura , Alicerces Teciduais/química , Materiais Biocompatíveis/química , Tamanho da Partícula , Polietilenoglicóis/química , Engenharia Tecidual
14.
J Healthc Eng ; 2018: 6573947, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29850000

RESUMO

In this work, tunable nonwoven mats based on poly(3-hydroxybutyrate) (PHB) and type I collagen (Coll) were successfully produced by electrospinning. The PHB/Coll weight ratio (fixed at 100/0, 70/30, and 50/50, resp.) was found to control the morphological, thermal, mechanical, and degradation properties of the mats. Increasing collagen amounts led to larger diameters of the fibers (in the approximate range 600-900 nm), while delaying their thermal decomposition (from 245°C to 262°C). Collagen also accelerated the hydrolytic degradation of the mats upon incubation in aqueous medium at 37°C for 23 days (with final weight losses of 1%, 15%, and 23% for 100/0, 70/30, and 50/50 samples, resp.), as a result of increased mat wettability and reduced PHB crystallinity. Interestingly, 70/30 meshes were the ones displaying the lowest stiffness (~116 MPa; p < 0.05 versus 100/0 and 50/50 meshes), while 50/50 samples had an elastic modulus comparable to that of 100/0 ones (~250 MPa), likely due to enhanced physical crosslinking of the collagen chains, at least at high protein amounts. All substrates were also found to allow for good viability and proliferation of murine fibroblasts, up to 6 days of culture. Collectively, the results evidenced the potential of as-spun PHB/Coll meshes for tissue engineering applications.


Assuntos
Materiais Biocompatíveis , Colágeno Tipo I/química , Hidroxibutiratos/química , Poliésteres/química , Engenharia Tecidual/instrumentação , Ácido 3-Hidroxibutírico/química , Animais , Proliferação de Células , Sobrevivência Celular , Colágeno/química , Temperatura Alta , Hidrólise , Camundongos , Células NIH 3T3 , Polímeros , Porosidade , Pós , Pressão , Proibitinas , Estresse Mecânico , Resistência à Tração , Engenharia Tecidual/métodos , Molhabilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA