Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 271: 115981, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38242046

RESUMO

To better understand the fate and assess the ingestible fraction of microplastics (by aquatic organisms), it is essential to quantify and characterize of their released from larger items under environmental realistic conditions. However, the current information on the fragmentation and size-based characteristics of released microplastics, for example from bio-based thermoplastics, is largely unknown. The goal of our work was to assess the fragmentation and release of microplastics, under ultraviolet (UV) radiation and in seawater, from polylactic acid (PLA) items, a bio-based polymer, and from polypropylene (PP) items, a petroleum-based polymer. To do so, we exposed pristine items of PLA and PP, immersed in filtered natural seawater, to accelerated UV radiation for 57 and 76 days, simulating 18 and 24 months of mean natural solar irradiance in Europe. Our results indicated that 76-day UV radiation induced the fragmentation of parent plastic items and the microplastics (50 - 5000 µm) formation from both PP and PLA items. The PP samples (48 ± 26 microplastics / cm2) released up to nine times more microplastics than PLA samples (5 ± 2 microplastics / cm2) after a 76-day UV exposure, implying that the PLA tested items had a lower fragmentation rate than PP. The particles' length of released microplastics was parameterized using a power law exponent (α), to assess their size distribution. The obtained α values were 3.04 ± 0.11 and 2.54 ± 0.06 (-) for 76-day UV weathered PP and PLA, respectively, meaning that PLA microplastics had a larger sized microplastics fraction than PP particles. With respect to their two-dimensional shape, PLA microplastics also had lower width-to-length ratio (0.51 ± 0.17) and greater fiber-shaped fractions (16%) than PP microplastics (0.57 ± 0.17% and 11%, respectively). Overall, the bio-based PLA items under study were more resistant to fragmentation and release of microplastics than the petroleum-based PP tested items, and the parameterized characteristics of released microplastics were polymer-dependent. Our work indicates that even though bio-based plastics may have a slower release of fragmented particles under UV radiation compared to conventional polymer types, they still have the potential to act as a source of microplastics in the marine environment, with particles being available to biota within ingestible size fractions, if not removed before major fragmentation processes.


Assuntos
Petróleo , Poluentes Químicos da Água , Polipropilenos , Microplásticos , Plásticos , Raios Ultravioleta , Imersão , Poliésteres , Água do Mar , Polímeros , Poluentes Químicos da Água/análise
2.
Environ Sci Technol ; 57(31): 11452-11464, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37504896

RESUMO

The transfer kinetics of plastic-associated chemicals during intestinal digestive processes is unknown. Here, we assessed whether digestive processes affect chemical exchange kinetics on microplastics, using an in vitro gut fluid digestive model mimicking the human upper intestinal tract. Chemical exchange kinetics of microplastics were measured for 10 polychlorinated biphenyls (PCBs) as proxies for the broad class of hydrophobic organic chemicals. Following earlier studies, olive oil was used as a proxy for digestible food, under high and low digestive enzyme activities. The micelle-water and oil-water partition coefficients of the 10 PCBs were also determined to evaluate the relative contribution of each gut component to sorb PCBs. A new biphasic and reversible chemical exchange model, which included the digestion process, fitted well to the empirical data. We demonstrate that the digestive processes that break down contaminated food can lead to a substantial increase in chemical concentration in microplastics by a factor of 10-20, thereby reducing the overall chemical bioavailability in the gastrointestinal tract when compared to a scenario without microplastics. Higher enzyme activities result in more chemicals being released by the digested food, thereby resulting in higher chemical concentrations in the microplastics. While the model-calibrated kinetic parameters are specific to the studied scenario, we argue that the mechanism of the reduced bioavailability of chemicals and the modeling tool developed have generic relevance. These digestive processes should be considered when assessing the risks of microplastics to humans and also biomagnification in aquatic food webs.


Assuntos
Bifenilos Policlorados , Poluentes Químicos da Água , Humanos , Microplásticos , Plásticos/química , Bifenilos Policlorados/análise , Disponibilidade Biológica , Poluentes Químicos da Água/análise , Água
3.
J Hazard Mater ; 409: 124460, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33183842

RESUMO

The current knowledge about the ecological effects of microplastic (MP) remains limited, and to-date ecotoxicity tests often utilize standard microplastic with one or two distinct size classes and expose the organisms to unrealistically high MP concentrations. We exposed the marine diatom Phaeodactylum tricornutum to microplastic particles of a mimicked realistic size frequency distribution complemented with serial experiments with distinct size classes. To do so, we exposed this diatom to a concentration series of different sized polyethylene (PE) microbeads (sizes: 10-106 µm; 1.25 ×102-1.25 ×107 particles/L) in a 72-h growth inhibition test. No effect on the growth of P. tricornutum by virgin PE microbeads up to 1.25 × 107 particles/L (or 499 mg/L), indicating environmentally relevant concentrations and sizes of MP does not alter the growth of marine diatoms. Results of smaller sized MPs (10-20 µm) did not differ from those obtained with larger MPs (90-106 µm) and mix sized MPs (10-106 µm), i.e. no impact on the microalgae growth. As a pioneer work, our results contribute with high quality dose-response data to an improved risk assessment of microplastic under realistic present and future marine MP pollution.


Assuntos
Diatomáceas , Microalgas , Poluentes Químicos da Água , Microplásticos , Plásticos/toxicidade , Poluentes Químicos da Água/toxicidade
4.
RSC Adv ; 11(52): 32917-32941, 2021 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-35493549

RESUMO

There is a growing interest in replacing fossil-based polymers and composites with more sustainable and renewable fully biobased composite materials in automotive, aerospace and marine applications. There is an effort to develop components with a reduced carbon footprint and environmental impact, and materials based on biocomposites could provide such solutions. Structural components can be subjected to different marine conditions, therefore assessment of their long-term durability according to their marine applications is necessary, highlighting related degradation mechanisms. Through an up-to-date review, this work critically discusses relevant literature on the long-term durability of biocomposites specific for marine environments. Importantly, in this review we report the effects of abiotic parameters, such as the influence of hygrothermal exposures (temperatures and UV radiation) on physical, mechanical and thermal characteristics of biocomposites. Furthermore, we identify and discuss the potential ecotoxicological effects of leaching substances and microplastics derived from biocomposites, as well as the change in mechanical, physical and thermal behaviours correlated to degradation in the fibre matrix interface, surface defects and overall deterioration of the composite's properties. Finally, the combined effects of various environmental exposures on the long-term durability of the biocomposites are critically reviewed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA