Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 61(32): e202205231, 2022 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-35612562

RESUMO

Interferons (IFN) are cytokines which, upon binding to cell surface receptors, trigger a series of downstream biochemical events including Janus Kinase (JAK) activation, phosphorylation of Signal Transducer and Activator of Transcription protein (STAT), translocation of pSTAT to the nucleus and transcriptional activation. Dysregulated IFN signalling has been linked to cancer progression and auto-immune diseases. Here, we report the serendipitous discovery of a small molecule that blocks IFNγ activation of JAK-STAT signalling. Further lead optimisation gave rise to a potent and more selective analogue that exerts its activity by a mechanism consistent with direct IFNγ targeting in vitro, which reduces bleeding in model of haemorrhagic colitis in vivo. This first-in-class small molecule also inhibits type I and III IFN-induced STAT phosphorylation in vitro. Our work provides the basis for the development of pan-IFN inhibitory drugs.


Assuntos
Interferons , Janus Quinases , Interferon gama , Interferons/metabolismo , Interferons/farmacologia , Fosforilação , Transdução de Sinais
2.
Nat Chem Biol ; 15(5): 549, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30833779

RESUMO

In the version of this article originally published, several co-authors had incorrect affiliation footnote numbers listed in the author list. Tatiana Cañeque and Angelica Mariani should each have affiliation numbers 3, 4 and 5, and Emmanuelle Charafe-Jauffret should have number 6. Additionally, there was an extra space in the name of co-author Robert P. St.Onge. These errors have been corrected in the HTML and PDF versions of the paper and the Supplementary Information PDF.

3.
Nat Chem Biol ; 15(4): 358-366, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30742123

RESUMO

Peripheral membrane proteins orchestrate many physiological and pathological processes, making regulation of their activities by small molecules highly desirable. However, they are often refractory to classical competitive inhibition. Here, we demonstrate that potent and selective inhibition of peripheral membrane proteins can be achieved by small molecules that target protein-membrane interactions by a noncompetitive mechanism. We show that the small molecule Bragsin inhibits BRAG2-mediated Arf GTPase activation in vitro in a manner that requires a membrane. In cells, Bragsin affects the trans-Golgi network in a BRAG2- and Arf-dependent manner. The crystal structure of the BRAG2-Bragsin complex and structure-activity relationship analysis reveal that Bragsin binds at the interface between the PH domain of BRAG2 and the lipid bilayer to render BRAG2 unable to activate lipidated Arf. Finally, Bragsin affects tumorsphere formation in breast cancer cell lines. Bragsin thus pioneers a novel class of drugs that function by altering protein-membrane interactions without disruption.


Assuntos
Fator 1 de Ribosilação do ADP/fisiologia , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Fatores de Troca do Nucleotídeo Guanina/fisiologia , Fator 1 de Ribosilação do ADP/metabolismo , Linhagem Celular Tumoral , GTP Fosfo-Hidrolases , Proteínas Ativadoras de GTPase , Fatores de Troca do Nucleotídeo Guanina/antagonistas & inibidores , Células HeLa , Humanos , Bicamadas Lipídicas , Glicoproteínas de Membrana/metabolismo , Nucleotídeos , Domínios de Homologia à Plecstrina/fisiologia , Ligação Proteica , Transdução de Sinais , Relação Estrutura-Atividade , Sulfotransferases/metabolismo
4.
Acc Chem Res ; 49(11): 2444-2458, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27797480

RESUMO

The rich chemistry of cyclobutanes is underpinned by a large body of synthetic literature devoted to their synthesis and decoration. This is motivated by the widespread representation of cyclobutane moieties in biologically active natural products and man-made molecules. Surprisingly, this vast array of knowledge finds no parallel in the chemistry of cyclobutenes, their unsaturated analogues. In particular, a dearth of methods to synthesize enantioenriched cyclobutenes is apparent upon cursory investigation of the literature. As a leading example, the photocycloaddition of maleic anhydride to acetylene or dichloroethylene, probably a benchmark of cyclobutene synthesis, delivers a meso cyclic anhydride which can be further converted to a cyclobutene product by enantioselective desymmetrization by ring opening. Nonetheless, such an approach delivers products with a rather inflexible substitution pattern around the four-membered ring. The lack of general approaches has motivated our group and others to develop novel routes to cyclobutene scaffolds, leading to the development of a strategy that combines photochemistry and catalysis. Indeed, we have coupled the simple and efficient photochemical isomerization of 2-pyrone into a strained bicyclo[2.2.0] lactone with palladium-catalyzed allylic alkylation as a simple and versatile access to functionalized cyclobutenes. Several nucleophiles can be added to the activated, strained intermediate, including malonate anions and azlactones. The products are mono- and bicyclic building blocks richly decorated with functional groups. Importantly, they are formed with high levels of diastereoselectivity as expected by the tenets of palladium-catalyzed allylic alkylation, which posit that the oxidative addition and nucleophilic capture steps proceed with inversion of configuration, resulting in overall retention (inversion + inversion). However, the transposition of the methodology to an asymmetric version subsequently led to the surprising discovery of a family of highly enantioselective, diastereodivergent catalytic processes. Indeed, we observed a ligand-dependent stereochemical outcome for a range of palladium-catalyzed allylic alkylations affording either overall retention or overall inversion of configuration, and that with very high levels of enantio- and diastereoselectivity. The new family of diastereodivergent reactions enables the conversion of the aforementioned racemic bicyclo[2.2.0] lactone into each of 4 stereoisomeric products, at will. Although the mechanistic details at the origin of this unusual stereodivergence are not yet fully elucidated, it became clear through our studies that unique Pd-allyl complexes, residing preferentially as their σ-(monohapto)-bound isomers, are at the heart of the process. The cyclobutenes prepared can also engage in electrocyclic ring-opening reactions (often spontaneous depending on the substitution pattern) that link this chemistry with that of diene and polyene frameworks. Using the strategies laid out above, our group was then able to harness the high stereospecificity of electrocyclic reactions and design modular syntheses of several natural products and natural product fragments. We believe that the methods presented herein shall soon pave the way for the streamlined synthesis of more complex polyenic natural products.


Assuntos
Alcadienos/síntese química , Ciclobutanos/química , Ciclobutanos/síntese química , Paládio/química , Alquilação , Compostos Bicíclicos Heterocíclicos com Pontes/química , Catálise , Complexos de Coordenação/química , Lactonas/química , Ligantes , Estereoisomerismo , Zinco/química
5.
Angew Chem Int Ed Engl ; 53(27): 7068-73, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24888236

RESUMO

A serendipitously discovered palladium-catalyzed asymmetric allylic alkylation reaction with diorganozinc reagents, which displays broad functional group compatibility, is reported. This novel transformation hinges on a remarkable ligand effect which overrides the standard "umpolung" reactivity of allyl-palladium intermediates in the presence of dialkylzincs. Owing to its mild conditions, enantioselective allylic alkylations of racemic allylic electrophiles are possible in the presence of sensitive functional groups.

6.
PLoS One ; 13(11): e0206764, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30399175

RESUMO

The clinically approved drug metformin has been shown to selectively kill persister cancer cells through mechanisms that are not fully understood. To provide further mechanistic insights, we developed a drug surrogate that phenocopies metformin and can be labeled in situ by means of click chemistry. Firstly, we found this molecule to be more potent than metformin in several cancer cell models. Secondly, this technology enabled us to provide visual evidence of mitochondrial targeting with this class of drugs. A combination of fluorescence microscopy and cyclic voltammetry indicated that metformin targets mitochondrial copper, inducing the production of reactive oxygen species in this organelle, mitochondrial dysfunction and apoptosis. Importantly, this study revealed that mitochondrial copper is required for the maintenance of a mesenchymal state of human cancer cells, and that metformin can block the epithelial-to-mesenchymal transition, a biological process that normally accounts for the genesis of persister cancer cells, through direct copper targeting.


Assuntos
Antineoplásicos/farmacologia , Cobre/metabolismo , Metformina/farmacologia , Mitocôndrias/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Antineoplásicos/química , Morte Celular/efeitos dos fármacos , Morte Celular/fisiologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Química Click , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Transição Epitelial-Mesenquimal/fisiologia , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Potencial da Membrana Mitocondrial/fisiologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/patologia , Metformina/química , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Neoplasias/metabolismo , Neoplasias/patologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Espécies Reativas de Oxigênio/metabolismo
8.
Nat Commun ; 8(1): 1091, 2017 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-29061994

RESUMO

The carbon-carbon double bond, with its diverse and multifaceted reactivity, occupies a prominent position in organic synthesis. Although a variety of simple alkenes are readily available, the mild and chemoselective introduction of a unit of unsaturation into a functionalized organic molecule remains an ongoing area of research, and the olefination of carbonyl compounds is a cornerstone of such approaches. Here we show the direct olefination of hydrazones via the intermediacy of three-membered ring species generated by addition of sulfoxonium ylides, departing from the general dogma of alkenes synthesis from carbonyls. Moreover, the mild reaction conditions and operational simplicity of the transformation render the methodology appealing from a practical point of view.

9.
Nat Commun ; 7: 10914, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26975182

RESUMO

Nitrogen-containing heteroaromatic cores are ubiquitous building blocks in organic chemistry. Herein, we present a family of metal-free intermolecular formal cycloaddition reactions that enable highly selective and orthogonal access to isoquinolines and pyrimidines at will. Applications of the products are complemented by a density functional theory mechanistic analysis that pinpoints the crucial factors responsible for the selectivity observed, including stoichiometry and the nature of the heteroalkyne.


Assuntos
Isoquinolinas/síntese química , Nitrogênio/química , Pirimidinas/química , Catálise , Ciclização , Reação de Cicloadição , Estrutura Molecular , Estereoisomerismo , Termodinâmica
10.
Org Lett ; 15(9): 2318-21, 2013 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-23614852

RESUMO

Catalytic asymmetric allylation of lactone 1 with allyl boronates leads to functionalized cyclobutenes in high regio- and stereoselectivity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA