Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
FEMS Yeast Res ; 9(5): 723-31, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19459980

RESUMO

Aldose-1-epimerase or mutarotase (EC 5.1.3.3) catalyzes interconversion of alpha/beta-anomers of aldoses, such as glucose and galactose, and is distributed in a wide variety of organisms from bacteria to humans. Nevertheless, the physiological role of this enzyme has been elusive in most cases, because the alpha-form of aldoses in the solid state spontaneously converts to the beta-form in an aqueous solution until an equilibrium of alpha : beta=36.5 : 63.5 is reached. A gene named GAL10 encodes this enzyme in yeast. Here, we show that the GAL10-encoded mutarotase is necessary for utilization of galactose in the milk yeast Kluyveromyces lactis, and that this condition is presumably created by the presence of the beta-specific galactose transporter, which excludes the alpha-anomer from the alpha/beta-mixture in the medium at the cell surface. Thus, we found that a mutarotase-deficient mutant of K. lactis failed to grow on medium, in which galactose was the sole carbon source, but, surprisingly, that the growth failure is suppressed by concomitant expression of the Saccharomyces cerevisiae-derived galactose transporter Gal2p, but not by that of the K. lactis galactose transporter Hgt1p. We also suggest the existence of another mutarotase in K. lactis, whose physiological role remains unknown, however.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Proteínas Fúngicas/metabolismo , Galactose/metabolismo , Kluyveromyces/metabolismo , Proteínas de Transporte de Monossacarídeos/metabolismo , Proteínas Periplásmicas de Ligação/metabolismo , Saccharomyces/metabolismo , Kluyveromyces/enzimologia , Proteínas de Transporte de Monossacarídeos/genética , Saccharomyces/enzimologia , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Estereoisomerismo , Especificidade por Substrato
2.
Mol Cell Biol ; 24(14): 6338-49, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15226435

RESUMO

We previously demonstrated the critical role of RNA polymerase I (Pol I)-associated factor PAF53 in mammalian rRNA transcription. Here, we report the isolation and characterization of another Pol I-associated factor, PAF49. Mouse PAF49 shows striking homology to the human nucleolar protein ASE-1, so that they are considered orthologues. PAF49 and PAF53 were copurified with a subpopulation of Pol I during purification from cell extracts. Physical association of PAF49 with Pol I was confirmed by a coimmunoprecipitation assay. PAF49 was shown to interact with PAF53 through its N-terminal segment. This region of PAF49 also served as the target for TAF(I)48, the 48-kDa subunit of selectivity factor SL1. Concomitant with this interaction, the other components of SL1 also coimmunoprecipitated with PAF49. Specific transcription from the mouse rRNA promoter in vitro was severely impaired by anti-PAF49 antibody, which was overcome by addition of recombinant PAF49 protein. Moreover, overexpression of a deletion mutant of PAF49 significantly reduced pre-rRNA synthesis in vivo. Immunolocalization analysis revealed that PAF49 accumulated in the nucleolus of growing cells but dispersed to nucleoplasm in growth-arrested cells. These results strongly suggest that PAF49/ASE-1 plays an important role in rRNA transcription.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas Nucleares/metabolismo , RNA Polimerase I/metabolismo , RNA Ribossômico/metabolismo , Fatores de Transcrição , Transcrição Gênica , Sequência de Aminoácidos , Animais , Proteínas de Transporte/química , Proteínas de Transporte/classificação , Proteínas de Transporte/genética , Clonagem Molecular , Humanos , Camundongos , Dados de Sequência Molecular , Células NIH 3T3 , Proteínas Nucleares/química , Proteínas Nucleares/genética , Filogenia , Proteínas Pol1 do Complexo de Iniciação de Transcrição/metabolismo , RNA Ribossômico/genética , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
3.
Mol Cell Biol ; 24(14): 6525-35, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15226451

RESUMO

Positive cofactor 4 (PC4) is a coactivator that strongly augments transcription by various activators, presumably by facilitating the assembly of the preinitiation complex (PIC). However, our previous observation of stimulation of promoter escape in GAL4-VP16-dependent transcription in the presence of PC4 suggested a possible role for PC4 in this step. Here, we performed quantitative analyses of the stimulatory effects of PC4 on initiation, promoter escape, and elongation in GAL4-VP16-dependent transcription and found that PC4 possesses the ability to stimulate promoter escape in response to GAL4-VP16 in addition to its previously demonstrated effect on PIC assembly. This stimulatory effect of PC4 on promoter escape required TFIIA and the TATA box binding protein-associated factor subunits of TFIID. Furthermore, PC4 displayed physical interactions with both TFIIH and GAL4-VP16 through its coactivator domain, and these interactions were regulated distinctly by PC4 phosphorylation. Finally, GAL4-VP16 and PC4 stimulated both initiation and promoter escape to similar extents on the promoters with three and five GAL4 sites; however, they stimulated promoter escape preferentially on the promoter with a single GAL4 site. These results provide insight into the mechanism by which PC4 permits multiply bound GAL4-VP16 to attain synergy to achieve robust transcriptional activation.


Assuntos
Regiões Promotoras Genéticas , Proteínas Repressoras/metabolismo , Transativadores/metabolismo , Transcrição Gênica , Animais , Regulação da Expressão Gênica , Modelos Genéticos , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Proteínas Repressoras/genética , Transativadores/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
4.
Genes Genet Syst ; 77(3): 147-57, 2002 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12207036

RESUMO

Recruitment of RNA polymerases to the cognate promoter is a key step for the transcription initiation of specific genes in eukaryotes. Recently, RNA polymerase I (pol I) of Saccharomyces cerevisiae was shown to be recruited to the rDNA promoter via interaction between Rrn3p, a conserved transcription factor for rDNA, and A43, a subunit specific to pol I. The question of whether a similar interaction for pol I recruitment is conserved in other eukaryotes remains to be answered. We show here that Schizosaccharomyces pombe rpa21(+) encodes a protein of apparent molecular mass 21 kD which shows 36% identity to the A43 subunit of pol I in S. cerevisiae, and that rpa21(+) is essential for cell growth. To gain further insight into the functions of RPA21, we isolated a total of 22 temperature-sensitive (ts) mutants of rpa21(+) and found that most of the substitutions causing the ts phenotype are clustered in the N-terminal half of RPA21. The ts mutants showed a markedly reduced amount of primary transcripts of rDNA immediately after temperature shift-up. Over-expression of S. pombe rrn3(+) in the ts mutants suppressed the growth defect in an allele-specific manner. Therefore, we conclude that S. pombe RPA21 plays a functional role similar to that of A43 in S. cerevisiae and that the mechanism of recruitment of pol I to the rDNA promoter by the interaction of a specific pol I subunit with Rrn3p is evolutionarily conserved.


Assuntos
DNA Ribossômico , Proteínas Pol1 do Complexo de Iniciação de Transcrição/genética , Regiões Promotoras Genéticas , RNA Polimerase I/genética , Schizosaccharomyces/enzimologia , Sequência de Aminoácidos , Sequência Conservada , Temperatura Alta , Dados de Sequência Molecular , Mutação , Proteínas Pol1 do Complexo de Iniciação de Transcrição/metabolismo , RNA Polimerase I/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/crescimento & desenvolvimento
5.
Genes Genet Syst ; 78(3): 199-209, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12893961

RESUMO

Saccharomyces cerevisiae A49 and mouse PAF53 are subunits specific to RNA polymerase I (Pol I) in eukaryotes. It has been known that Pol I without A49 or PAF53 maintains non-specific transcription activities but a molecular role(s) of A49 (and PAF53) remains totally unknown. We studied the fission yeast gene encoding a protein of 415 amino acids exhibiting 30% and 19% identities to A49 and PAF53, respectively. We designate the corresponding protein RPA51 and gene encoding it rpa51+ since the gene encodes a Pol I subunit and an apparent molecular mass of the protein is 51 kDa. rpa51+ is required for cell growth at lower but not at higher temperatures and is able to complement S. cerevisiae rpa49Delta mutation, indicating that RPA51 is a functionally-conserved subunit of Pol I between the budding yeast and the fission yeast. Deletion analysis of rpa51+ shows that only two-thirds of the C-terminal region are required for the function. Transcripts analysis in vivo and in vitro shows that RPA51 plays a general role for maximizing transcription of rDNA whereas it is dispensable for non-specific transcription. We also found that RPA51 associates significantly with Pol I in the stationary phase, suggesting that Pol I inactivation in the stationary phase of yeast does not result from the RPA51 dissociation.


Assuntos
DNA Ribossômico/genética , RNA Polimerase I/genética , Saccharomycetales/enzimologia , Schizosaccharomyces/enzimologia , Transcrição Gênica , Sequência de Aminoácidos , Dados de Sequência Molecular , Mutação , Estrutura Terciária de Proteína , Subunidades Proteicas , RNA Polimerase I/isolamento & purificação , RNA Polimerase I/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomycetales/genética , Saccharomycetales/crescimento & desenvolvimento , Schizosaccharomyces/genética , Schizosaccharomyces/crescimento & desenvolvimento , Deleção de Sequência , Homologia de Sequência de Aminoácidos
6.
Antiviral Res ; 91(3): 252-8, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21722671

RESUMO

Virus-specific cytotoxic T lymphocytes (CTLs) in the lung are considered to confer protection from respiratory viruses. Several groups demonstrated that the route of priming was likely to have an implication for the trafficking of antigen-specific CTLs. Therefore, we investigated whether the route of immunization with adenoviral vaccine influenced the recruitment of virus-specific CTLs in the lung that should provide potent protection from influenza A virus. Mice were immunized with recombinant adenovirus expressing the matrix (M1) protein of influenza A virus via various immunization routes involving intraperitoneal, intranasal, intramuscular, or intravenous administration as well as subcutaneous administration in the hind hock. We found that the immunization route dramatically impacted the recruitment of M1-specific IFN-γ(+) CD8(+) T cells both in the lung and the spleen. Surprisingly, hock immunization was most effective for the accumulation in the lung of IFN-γ-producing CD8(+) T cells that possessed M1-specific cytolytic activity. Further, antigen-driven IFN-γ(+) CD8(+) T cells in the lung, but not in the spleen, were likely to be correlated with the resistance to challenge with influenza A virus. These results may improve our ability to design vaccines that target virus-specific CTL responses to respiratory viruses such as influenza A virus.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Vírus da Influenza A/efeitos dos fármacos , Vacinas contra Influenza/administração & dosagem , Pulmão/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Vacinação/métodos , Vacinas Sintéticas/administração & dosagem , Proteínas da Matriz Viral/administração & dosagem , Adenoviridae/química , Adenoviridae/imunologia , Animais , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/virologia , Movimento Celular/efeitos dos fármacos , Vias de Administração de Medicamentos , Feminino , Citometria de Fluxo , Vetores Genéticos/administração & dosagem , Vetores Genéticos/química , Vetores Genéticos/imunologia , Humanos , Vírus da Influenza A/imunologia , Vacinas contra Influenza/imunologia , Injeções Subcutâneas , Interferon gama/análise , Interferon gama/biossíntese , Pulmão/citologia , Pulmão/virologia , Camundongos , Camundongos Endogâmicos C57BL , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/virologia , Baço/citologia , Baço/imunologia , Baço/virologia , Vacinas Sintéticas/química , Vacinas Sintéticas/imunologia , Proteínas da Matriz Viral/síntese química , Proteínas da Matriz Viral/imunologia
7.
FEBS Lett ; 585(21): 3355-9, 2011 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-21983101

RESUMO

An Rpa43/Rpa14 stalk protrudes from RNA polymerase I (RNAPI), with homology to Rpb7/Rpb4 (RNAPII), Rpc25/Rpc17 (RNAPIII) and RpoE/RpoF (archaea). In fungi and vertebrates, Rpa43 contains hydrophilic domains forming about half of its size, but these domains lack in Schizosaccharomyces pombe and most other eukaryote lineages. In Saccharomyces cerevisiae, they can be lost with little or no growth effect, as shown by deletion mapping and by domain swapping with fission yeast, but genetically interact with rpa12Δ, rpa34Δ or rpa49Δ, lacking non-essential subunits important for transcript elongation. Two-hybrid data and other genetic evidence suggest that Rpa43 directly bind Spt5, an RNAPI elongation factor also acting in RNAPII-dependent transcription, and may also interact with the nucleosomal chaperone Spt6.


Assuntos
RNA Polimerase I/química , RNA Polimerase I/metabolismo , Saccharomyces cerevisiae/enzimologia , Schizosaccharomyces/enzimologia , Transcrição Gênica , Sequência de Aminoácidos , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Teste de Complementação Genética , Chaperonas de Histonas , Modelos Moleculares , Dados de Sequência Molecular , Proteínas Nucleares/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Fatores de Elongação da Transcrição/metabolismo
8.
J Biosci Bioeng ; 111(3): 249-54, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21237705

RESUMO

A Saccharomyces cerevisiae mutant lacking PPZ1, encoding a serine/threonine protein phosphatase (PPase), is caffeine-sensitive. To clarify the function of Ppz1 in resistance to caffeine, we attempted systematically to identify protein kinase (PKase) whose disruption lead to suppression of caffeine sensitive phenotype of the ∆ppz1 disruptant since disruption of PPZ1 might cause caffeine sensitivity by increasing its phosphorylated substrates and we presumed that disruption of genes for PKase sharing the substrate with Ppz1 could restore the resistance through bypassing necessity for dephosphorylation of substrates. Among the 102 viable pkase disruptions, disruption of either SAT4 or HAL5 suppressed the caffeine sensitivity phenotype and increased expression of ENA1, encoding a P-type ATPase of the ∆ppz1 disruptant. Because increased expression of ENA1 in the ∆ppz1 disruptant was found to be suppressed by disruption of GLN3, localization and phosphorylation of Gln3 in the ∆ppz1 disruptant was compared to that in the ∆ppz1∆sat4 and ∆ppz1∆hal5 double disruptants. Gln3 was found to accumulate in the nucleus in the ∆ppz1 disruptant, and this nuclear localization was abolished by disruption of either SAT4 or HAL5. Interestingly, the level of Gln3 phosphorylation in the ∆ppz1∆sat4 and ∆ppz1∆hal5 disruptants decreased relative to wild type independent of caffeine. From these observations, we conclude that Ppz1 controls Gln3 localization by regulating its phosphorylation state in combination with Sat4 and Hal5.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Fatores de Transcrição/metabolismo , Cafeína/farmacologia , Núcleo Celular/metabolismo , Regulação Fúngica da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intracelular/genética , Fosfoproteínas Fosfatases/genética , Fosforilação , Proteínas Quinases/genética , Proteínas Serina-Treonina Quinases/genética , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , ATPase Trocadora de Sódio-Potássio/genética , ATPase Trocadora de Sódio-Potássio/metabolismo , Fatores de Transcrição/genética
9.
Mol Cell Biol ; 28(5): 1596-605, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18086878

RESUMO

Rpa34 and Rpa49 are nonessential subunits of RNA polymerase I, conserved in species from Saccharomyces cerevisiae and Schizosaccharomyces pombe to humans. Rpa34 bound an N-terminal region of Rpa49 in a two-hybrid assay and was lost from RNA polymerase in an rpa49 mutant lacking this Rpa34-binding domain, whereas rpa34Delta weakened the binding of Rpa49 to RNA polymerase. rpa34Delta mutants were caffeine sensitive, and the rpa34Delta mutation was lethal in a top1Delta mutant and in rpa14Delta, rpa135(L656P), and rpa135(D395N) RNA polymerase mutants. These defects were shared by rpa49Delta mutants, were suppressed by the overexpression of Rpa49, and thus, were presumably mediated by Rpa49 itself. rpa49 mutants lacking the Rpa34-binding domain behaved essentially like rpa34Delta mutants, but strains carrying rpa49Delta and rpa49-338::HIS3 (encoding a form of Rpa49 lacking the conserved C terminus) had reduced polymerase occupancy at 30 degrees C, failed to grow at 25 degrees C, and were sensitive to 6-azauracil and mycophenolate. Mycophenolate almost fully dissociated the mutant polymerase from its ribosomal DNA (rDNA) template. The rpa49Delta and rpa49-338::HIS3 mutations had a dual effect on the transcription initiation factor Rrn3 (TIF-IA). They partially impaired its recruitment to the rDNA promoter, an effect that was bypassed by an N-terminal deletion of the Rpa43 subunit encoded by rpa43-35,326, and they strongly reduced the release of the Rrn3 initiation factor during elongation. These data suggest a dual role of the Rpa49-Rpa34 dimer during the recruitment of Rrn3 and its subsequent dissociation from the elongating polymerase.


Assuntos
Proteínas Pol1 do Complexo de Iniciação de Transcrição/metabolismo , Subunidades Proteicas/metabolismo , RNA Polimerase I/química , RNA Polimerase I/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica , Sequência de Aminoácidos , Imunoprecipitação da Cromatina , Dimerização , Inibidores Enzimáticos/farmacologia , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Ácido Micofenólico/farmacologia , Plasmídeos , Ligação Proteica , Subunidades Proteicas/genética , RNA Polimerase I/genética , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/enzimologia , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Homologia de Sequência de Aminoácidos , Técnicas do Sistema de Duplo-Híbrido
10.
J Biol Chem ; 280(12): 11467-74, 2005 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-15647272

RESUMO

A heterodimer formed by the A14 and A43 subunits of RNA polymerase (pol) I in Saccharomyces cerevisiae is proposed to correspond to the Rpb4/Rpb7 and C17/C25 heterodimers in pol II and pol III, respectively, and to play a role(s) in the recruitment of pol I to the promoter. However, the question of whether the A14/A43 heterodimer is conserved in eukaryotes other than S. cerevisiae remains unanswered, although both Rpb4/Rpb7 and C17/C25 are conserved from yeast to human. To address this question, we have isolated a Schizosaccharomyces pombe gene named ker1+ using a yeast two-hybrid system, including rpa21+, which encodes an ortholog of A43, as bait. Although no homolog of A14 has previously been found in the S. pombe genome, functional characterization of Ker1p and alignment of Ker1p and A14 showed that Ker1p is an ortholog of A14. Disruption of ker1+ resulted in temperature-sensitive growth, and the temperature-sensitive deficit of ker1delta was suppressed by overexpression of either rpa21+ or rrn3+, which encodes the rDNA transcription factor Rrn3p, suggesting that Ker1p is involved in stabilizing the association of RPA21 and Rrn3p in pol I. We also found that Ker1p dissociated from pol I in post-log-phase cells, suggesting that Ker1p is involved in growth-dependent regulation of rDNA transcription.


Assuntos
Proteínas Pol1 do Complexo de Iniciação de Transcrição/química , RNA Polimerase I/química , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/fisiologia , Sequência de Aminoácidos , Nucléolo Celular/química , DNA Ribossômico/genética , Dimerização , Dados de Sequência Molecular , Peso Molecular , Fosforilação , Subunidades Proteicas , Temperatura , Transcrição Gênica
11.
Proc Natl Acad Sci U S A ; 99(3): 1206-11, 2002 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-11818577

RESUMO

Eukaryotic transcriptional activators have been proposed to function, for the most part, by promoting the assembly of preinitiation complex through the recruitment of the RNA polymerase II transcriptional machinery to the promoter. Previous studies have shown that transcriptional activation is critically dependent on transcription factor IIH (TFIIH), which functions during promoter opening and promoter escape, the steps following preinitiation complex assembly. Here we have analyzed the role of TFIIH in transcriptional activation and show that the excision repair cross-complementing (ERCC) 3 helicase activity of TFIIH plays a regulatory role to stimulate promoter escape in activated transcription. The stimulatory effect of the ERCC3 helicase is observed until approximately 10-nt RNA is synthesized, and the helicase seems to act throughout the entire course of promoter escape. Analyses of the early phase of transcription show that a majority of the initiated complexes abort transcription and fail to escape the promoter; however, the proportion of productive complexes that escape the promoter apparently increases in response to activation. Our results establish that promoter escape is an important regulatory step stimulated by the ERCC3 helicase activity in response to activation and reveal a possible mechanism of transcriptional synergy.


Assuntos
Reparo do DNA , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila , Regiões Promotoras Genéticas , Proteínas de Saccharomyces cerevisiae , Fatores de Transcrição TFIII/metabolismo , Transcrição Gênica , Alanina , Substituição de Aminoácidos , Sequência de Bases , Sítios de Ligação , Clonagem Molecular , Proteínas Fúngicas/metabolismo , Vetores Genéticos , Lisina , Dados de Sequência Molecular , Mutagênese Insercional , RNA Polimerase II/metabolismo , Proteínas Recombinantes/metabolismo , Mapeamento por Restrição , Saccharomyces cerevisiae/metabolismo , TATA Box , Fatores de Transcrição/metabolismo , Ativação Transcricional
12.
J Biol Chem ; 278(17): 14827-31, 2003 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-12590132

RESUMO

Positive cofactor 4 (PC4), originally identified as a transcriptional coactivator, possesses the ability to suppress promoter-driven as well as nonspecific transcription via its DNA binding activity. Previous studies showed that the repressive activity of PC4 on promoter-driven transcription is alleviated by transcription factor TFIIH, possibly through one of its enzymatic activities. Using recombinant TFIIH, we have analyzed the role of TFIIH for alleviating PC4-mediated transcriptional repression and determined that the excision repair cross complementing (ERCC3) helicase activity of TFIIH is the enzymatic activity that alleviates PC4-mediated repression via beta-gamma bond hydrolysis of ATP. In addition, the alleviation does not require either ERCC2 helicase or cyclin-dependent kinase 7 kinase activity. We also show that, as complexed within TFIIH, the cyclin-dependent kinase 7 kinase does not possess the activity to phosphorylate PC4. Thus, TFIIH appears to protect promoters from PC4-mediated repression by relieving the topological constraint imposed by PC4 through the ERCC3 helicase activity rather than by reducing the repressive activity of PC4 via its phosphorylation.


Assuntos
DNA Helicases/genética , Proteínas de Ligação a DNA , Proteínas Repressoras/genética , Transativadores/genética , Fatores de Transcrição TFII/genética , Fatores de Transcrição , Transcrição Gênica , Trifosfato de Adenosina/metabolismo , Quinases Ciclina-Dependentes , Humanos , Hidrólise , Proteínas Imediatamente Precoces , Proteínas de Membrana , Mutação , Fosforilação , Proteínas , Proteínas Recombinantes , Proteínas Repressoras/metabolismo , Transativadores/metabolismo , Fator de Transcrição TFIIH , Proteína Grupo D do Xeroderma Pigmentoso , Quinase Ativadora de Quinase Dependente de Ciclina
13.
J Biol Chem ; 279(44): 45969-79, 2004 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-15304486

RESUMO

The receptor activator of NF-kappaB ligand (RANKL) induces various osteoclast-specific marker genes during osteoclast differentiation mediated by mitogen-activated protein (MAP) kinase cascades. However, the results of transcriptional programming of an osteoclast-specific cathepsin K gene are inconclusive. Here we report the regulatory mechanisms of RANKL-induced cathepsin K gene expression during osteoclastogenesis in a p38 MAP kinase-dependent manner. The reporter gene analysis with sequential 5'-deletion constructs of the cathepsin K gene promoter indicates that limited sets of the transcription factors such as NFATc1, PU.1, and microphthalmia transcription factor indeed enhance synergistically the gene expression when overexpressed in RAW264 cells. In addition, the activation of p38 MAP kinase is required for the maximum enhancement of the gene expression. RANKL-induced NFATc1 forms a complex with PU.1 in nuclei of osteoclasts following the nuclear accumulation of NFATc1 phosphorylated by the activated p38 MAP kinase. These results suggest that the RANKL-induced cathepsin K gene expression is cooperatively regulated by the combination of the transcription factors and p38 MAP kinase in a gradual manner.


Assuntos
Proteínas de Transporte/fisiologia , Catepsinas/genética , Proteínas de Ligação a DNA/fisiologia , Regulação Enzimológica da Expressão Gênica , Glicoproteínas de Membrana/fisiologia , Proteínas Nucleares/fisiologia , Osteoclastos/fisiologia , Proteínas Proto-Oncogênicas/fisiologia , Transativadores/fisiologia , Fatores de Transcrição/fisiologia , Proteínas Quinases p38 Ativadas por Mitógeno/fisiologia , Animais , Catepsina K , Diferenciação Celular , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Fator de Transcrição Associado à Microftalmia , Fatores de Transcrição NFATC , Fosforilação , Regiões Promotoras Genéticas , Ligante RANK , Receptor Ativador de Fator Nuclear kappa-B , Proteínas Recombinantes/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA