Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 119
Filtrar
1.
Photosynth Res ; 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37751034

RESUMO

Flash-induced absorption changes in the Soret region arising from the [PD1PD2]+ state, the chlorophyll cation radical formed upon light excitation of Photosystem II (PSII), were measured in Mn-depleted PSII cores at pH 8.6. Under these conditions, TyrD is i) reduced before the first flash, and ii) oxidized before subsequent flashes. In wild-type PSII, when TyrD● is present, an additional signal in the [PD1PD2]+-minus-[PD1PD2] difference spectrum was observed when compared to the first flash when TyrD is not oxidized. The additional feature was "W-shaped" with troughs at 434 nm and 446 nm. This feature was absent when TyrD was reduced, but was present (i) when TyrD was physically absent (and replaced by phenylalanine) or (ii) when its H-bonding histidine (D2-His189) was physically absent (replaced by a Leucine). Thus, the simple difference spectrum without the double trough feature at 434 nm and 446 nm, seemed to require the native structural environment around the reduced TyrD and its H bonding partners to be present. We found no evidence of involvement of PD1, ChlD1, PheD1, PheD2, TyrZ, and the Cytb559 heme in the W-shaped difference spectrum. However, the use of a mutant of the PD2 axial His ligand, the D2-His197Ala, shows that the PD2 environment seems involved in the formation of "W-shaped" signal.

2.
Nature ; 543(7643): 131-135, 2017 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-28219079

RESUMO

Photosystem II (PSII) is a huge membrane-protein complex consisting of 20 different subunits with a total molecular mass of 350 kDa for a monomer. It catalyses light-driven water oxidation at its catalytic centre, the oxygen-evolving complex (OEC). The structure of PSII has been analysed at 1.9 Å resolution by synchrotron radiation X-rays, which revealed that the OEC is a Mn4CaO5 cluster organized in an asymmetric, 'distorted-chair' form. This structure was further analysed with femtosecond X-ray free electron lasers (XFEL), providing the 'radiation damage-free' structure. The mechanism of O=O bond formation, however, remains obscure owing to the lack of intermediate-state structures. Here we describe the structural changes in PSII induced by two-flash illumination at room temperature at a resolution of 2.35 Å using time-resolved serial femtosecond crystallography with an XFEL provided by the SPring-8 ångström compact free-electron laser. An isomorphous difference Fourier map between the two-flash and dark-adapted states revealed two areas of apparent changes: around the QB/non-haem iron and the Mn4CaO5 cluster. The changes around the QB/non-haem iron region reflected the electron and proton transfers induced by the two-flash illumination. In the region around the OEC, a water molecule located 3.5 Å from the Mn4CaO5 cluster disappeared from the map upon two-flash illumination. This reduced the distance between another water molecule and the oxygen atom O4, suggesting that proton transfer also occurred. Importantly, the two-flash-minus-dark isomorphous difference Fourier map showed an apparent positive peak around O5, a unique µ4-oxo-bridge located in the quasi-centre of Mn1 and Mn4 (refs 4,5). This suggests the insertion of a new oxygen atom (O6) close to O5, providing an O=O distance of 1.5 Å between these two oxygen atoms. This provides a mechanism for the O=O bond formation consistent with that proposed previously.


Assuntos
Cristalografia/métodos , Elétrons , Lasers , Luz , Oxigênio/química , Oxigênio/efeitos da radiação , Complexo de Proteína do Fotossistema II/química , Complexo de Proteína do Fotossistema II/efeitos da radiação , Biocatálise/efeitos da radiação , Cianobactérias/química , Transporte de Elétrons/efeitos da radiação , Análise de Fourier , Manganês/química , Manganês/metabolismo , Modelos Moleculares , Ferroproteínas não Heme/química , Ferroproteínas não Heme/metabolismo , Ferroproteínas não Heme/efeitos da radiação , Oxigênio/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Prótons , Temperatura , Fatores de Tempo , Água/química , Água/metabolismo
3.
Biochemistry ; 61(13): 1351-1362, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35686693

RESUMO

In photosystem II (PSII), the secondary plastoquinone electron acceptor QB functions as a substrate that converts into plastoquinol upon its double reduction by electrons abstracted from water. It has been suggested that a histidine residue, D1-H252, which is located at the stromal surface near QB, is involved in the pH-dependent regulation of electron flow and proton transfer to QB. However, definitive evidence for the involvement of D1-H252 in the QB reactions has not been obtained yet. Here, we studied the roles of D1-H252 in PSII using a cyanobacterial mutant, in which D1-H252 was replaced with Ala. Delayed luminescence (DL) measurement upon a single flash showed a faster QB- decay at higher pH in the thylakoids from the wild-type strain due to the downshift of the redox potential of QB [Em(QB-/QB)]. This pH dependence of the QB- decay was lost in the D1-H252A mutant. The experimental Em(QB-/QB) changes were well reproduced by the density functional theory calculations for models with different protonation states of D1-H252 and with Ala replaced for H252. It was further shown that the period-four oscillation of the DL intensity by successive flashes was significantly diminished in the D1-H252A mutant, suggesting the inhibition of plastoquinone exchange at the QB pocket in this mutant. It is thus concluded that D1-H252 is a key amino acid residue that regulates electron flow in PSII by sensing pH in the stroma and stabilizes the QB binding site to facilitate the quinone exchange reaction.


Assuntos
Complexo de Proteína do Fotossistema II , Plastoquinona , Transporte de Elétrons , Elétrons , Histidina/genética , Histidina/metabolismo , Concentração de Íons de Hidrogênio , Complexo de Proteína do Fotossistema II/química , Plastoquinona/metabolismo
4.
Photosynth Res ; 152(2): 135-151, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34985636

RESUMO

Photosystem II (PSII) performs oxidation of water and reduction of plastoquinone through light-induced electron transfer. Electron transfer reactions at individual redox cofactors are controlled by their redox potentials, and the forward and backward electron flows in PSII are regulated by tuning them. It is, thus, crucial to accurately estimate the redox potentials of the cofactors and their shifts by environmental changes to understand the regulatory mechanisms in PSII. Fourier-transform infrared (FTIR) spectroelectrochemistry combined with a light-induced difference technique is a powerful method to investigate the mechanisms of the redox reactions in PSII. In this review, we introduce the methodology and the application of this method in the studies of the iron-quinone complex, which consists of two plastoquinone molecules, QA and QB, and the non-heme iron, on the electron-acceptor side of PSII. It is shown that FTIR spectroelectrochemistry is a useful method not only for estimating the redox potentials but also for detecting the reactions of nearby amino-acid residues coupled with the redox reactions.


Assuntos
Complexo de Proteína do Fotossistema II , Plastoquinona , Transporte de Elétrons , Elétrons , Ferro , Oxirredução , Quinonas , Espectroscopia de Infravermelho com Transformada de Fourier
5.
Biochemistry ; 60(48): 3697-3706, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34784184

RESUMO

The primary quinone electron acceptor QA is a key component in the electron transfer regulation in photosystem II (PSII), and hence accurate estimation of its redox potential, Em(QA-/QA), is crucial in understanding the regulatory mechanism. Although fluorescence detection has been extensively used for monitoring the redox state of QA, it was recently suggested that this method tends to provide a higher Em(QA-/QA) estimate depending on the sample status due to the effect of measuring light [Kato et al. (2019) Biochim. Biophys. Acta 1860, 148082]. In this study, we applied the Fourier transform infrared (FTIR) spectroelectrochemistry, which uses non-reactive infrared light to monitor the redox state of QA, to investigate the effects of stromal- and lumenal-side perturbations on Em(QA-/QA) in PSII. It was shown that replacement of bicarbonate bound to the non-heme iron with formate upshifted Em(QA-/QA) by ∼55 mV, consistent with the previous fluorescence measurement. In contrast, an Em(QA-/QA) difference between binding of 3-(3,4-dichlorophenyl)-1,1-dimethylurea and bromoxynil was found to be ∼30 mV, which is much smaller than the previous estimate, ∼100 mV, by the fluorescence method. This ∼30 mV difference was verified by the decay kinetics of the S2QA- recombination. On the lumenal side, Mn depletion hardly affected the Em(QA-/QA), confirming the previous FTIR result. However, removal of the extrinsic proteins by NaCl or CaCl2 wash downshifted the Em(QA-/QA) by 14-20 mV. These results suggest that electron flow through QA is regulated by changes both on the stromal and lumenal sides of PSII.


Assuntos
Benzoquinonas/química , Transporte de Elétrons , Oxidantes/química , Complexo de Proteína do Fotossistema II/química , Bicarbonatos/química , Elétrons , Formiatos/química , Cinética , Oxirredução
6.
Biochemistry ; 60(27): 2170-2178, 2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34181388

RESUMO

The non-heme iron that bridges the two plastoquinone electron acceptors, QA and QB, in photosystem II (PSII) is known to have a redox potential (Em) of ∼+400 mV with a pH dependence of ∼-60 mV/pH. However, titratable amino acid residues that are coupled to the redox reaction of the non-heme ion and responsible for its pH dependence remain unidentified. In this study, to clarify the mechanism of the pH dependent change of Em(Fe2+/Fe3+), we investigated the protonation structures of amino acid residues correlated with the pH-induced Em(Fe2+/Fe3+) changes using Fourier transform infrared (FTIR) spectroelectrochemistry combined with the attenuated total reflection (ATR) and light-induced difference techniques. Flash-induced Fe2+/Fe3+ ATR-FTIR difference spectra obtained at different electrode potentials in the pH range of 5.0-8.5 showed a linear pH dependence of Em(Fe2+/Fe3+) with a slope of -52 mV/pH close to the theoretical value at 10 °C, the measurement temperature. The spectral features revealed that D1-H215, a ligand to the non-heme iron interacting with QB, was deprotonated to an imidazolate anion at higher pH with a pKa of ∼5.6 in the Fe3+ state, while carboxylate groups from Glu/Asp residues present on the stromal side of PSII were protonated at lower pH with a pKa of ∼5.7 in the Fe2+ state. It is thus concluded that the deprotonation/protonation reactions of D1-H215 and Glu/Asp residues located near the non-heme iron cause the pH-dependent changes in Em(Fe2+/Fe3+) at higher and lower pH regions, respectively, realizing a linear pH dependence over a wide pH range.


Assuntos
Ferro/análise , Complexo de Proteína do Fotossistema II/química , Spinacia oleracea/química , Concentração de Íons de Hidrogênio , Modelos Moleculares , Oxirredução , Espectroscopia de Infravermelho com Transformada de Fourier
7.
Biochemistry ; 59(45): 4336-4343, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33147961

RESUMO

The iron-quinone complex in photosystem II (PSII) consists of the two plastoquinone electron acceptors, QA and QB, and a non-heme iron connecting them. It has been suggested that nearby histidine residues play important roles in the electron and proton transfer reactions of the iron-quinone complex in PSII. In this study, we investigated the protonation/deprotonation reaction of D1-H215, which bridges the non-heme iron and QB, using attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy. Flash-induced Fe2+/Fe3+ ATR-FTIR difference spectra were measured with PSII membranes in the pH range of 5.0-7.5. In the CN stretching region of histidine, the intensity of a negative peak at 1094 cm-1, which was assigned to the deprotonated anion form of D1-H215, increased as the pH increased. Singular-value decomposition analysis provided a component due to deprotonation of D1-H215 with a pKa of ∼5.5 in the Fe3+ state, whereas no component of histidine deprotonation was resolved in the Fe2+ state. This observation supports the previous proposal that D1-H215 is responsible for the proton release upon Fe2+ oxidation [Berthomieu, C., and Hienerwadel, R. (2001) Biochemistry 40, 4044-4052]. The pH dependence of the 13C isotope-edited bands of the bicarbonate ligand to the non-heme iron further showed that deprotonation of bicarbonate to carbonate does not take place at pH <8 in the Fe2+ or Fe3+ state. These results suggest that the putative mechanism of proton transfer to QBH- through D1-H215 and bicarbonate around Fe2+ functions throughout the physiological pH range.


Assuntos
Histidina/química , Histidina/metabolismo , Ferro/química , Compostos Organometálicos/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Prótons , Quinonas/química , Ligantes , Luz , Modelos Moleculares , Compostos Organometálicos/química , Complexo de Proteína do Fotossistema II/química , Ligação Proteica , Conformação Proteica , Espectroscopia de Infravermelho com Transformada de Fourier
8.
Phys Chem Chem Phys ; 22(42): 24213-24225, 2020 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-33084674

RESUMO

Photosynthetic water oxidation takes place through the light-driven cycle of five intermediates (S0-S4) of the water oxidizing complex (WOC), which consists of the Mn4CaO5 cluster and surrounding amino acid residues in photosystem II. Clarifying the protonation structures of the Mn4CaO5 cluster and its water ligands (W1-W4) is essential for understanding the molecular mechanism of water oxidation. Here, we performed normal mode analysis of WOC in the S0 and S1 states using quantum mechanics/molecular mechanics calculations and simulated an S1-minus-S0 infrared difference spectrum focusing on the symmetric COO- stretching (νsCOO-) region. The calculated spectrum by an S0 model, in which O4 of the Mn4CaO5 cluster is protonated and W2 is H2O, and a corresponding S1 state with deprotonated O4 best reproduced the νsCOO- features of the experimental spectrum, whereas models with protonated O5 showed poor agreement. In addition, comparison of the calculated coordination distances of the water ligands with the experimental data by X-ray diffraction analysis indicates that W2 is most probably not OH- but H2O both in the S0 and S1 states. The present calculations thus strongly suggest that the S0 state has a protonation structure of O4-H and W2 = H2O. The O4-H structure in the S0 state supports the view that this proton is released through the O4-water chain immediately after electron transfer during the S0→ S1 transition.


Assuntos
Modelos Moleculares , Complexo de Proteína do Fotossistema II/química , Água/química , Oxirredução , Prótons , Teoria Quântica
9.
Biochemistry ; 58(42): 4276-4283, 2019 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-31568726

RESUMO

Photosynthetic water oxidation takes place at the Mn4CaO5 cluster in photosystem II via a light-driven cycle of intermediates called S states (S0-S4). Clarifying how electron and proton transfer reactions are coupled with each other in the S2 → S3 transition, which occurs just before O-O bond formation, is crucial for understanding the water oxidation mechanism. Here, we investigated the pH dependence of the kinetics of the S2 → S3 transition using time-resolved infrared (TRIR) spectroscopy to identify the proton release phase in this transition. TRIR measurements of YD-less PSII core complexes from the D2-Y160F mutant of Thermosynechococcus elongatus showed that the last phase in this transition (τ ∼ 350 µs at pH 6) was strongly dependent on pH, and its time constant at pH 5 was larger than that at pH 8 by a factor of >3. In contrast, the earlier phase with a time constant of ∼100 µs was virtually independent of pH. These results strongly support the view that proton release is a rate-limiting step of the proton-coupled electron transfer in the last phase of the S2 → S3 transition. This proton release enables electron transfer by removing an excessive positive charge from the catalytic center and hence decreasing its redox potential.


Assuntos
Cianobactérias/química , Complexo de Proteína do Fotossistema II/química , Prótons , Espectrofotometria Infravermelho/métodos , Água/química , Domínio Catalítico , Transporte de Elétrons , Ligação de Hidrogênio , Concentração de Íons de Hidrogênio , Cinética , Oxirredução/efeitos da radiação , Complexo de Proteína do Fotossistema II/isolamento & purificação , Thermosynechococcus
10.
J Biol Chem ; 293(38): 14786-14797, 2018 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-30076221

RESUMO

Sulfoquinovosyl-diacylglycerol (SQDG) is one of the four lipids present in the thylakoid membranes. Depletion of SQDG causes different degrees of effects on photosynthetic growth and activities in different organisms. Four SQDG molecules bind to each monomer of photosystem II (PSII), but their role in PSII function has not been characterized in detail, and no PSII structure without SQDG has been reported. We analyzed the activities of PSII from an SQDG-deficient mutant of the cyanobacterium Thermosynechococcus elongatus by various spectroscopic methods, which showed that depletion of SQDG partially impaired the PSII activity by impairing secondary quinone (QB) exchange at the acceptor site. We further solved the crystal structure of the PSII dimer from the SQDG deletion mutant at 2.1 Å resolution and found that all of the four SQDG-binding sites were occupied by other lipids, most likely PG molecules. Replacement of SQDG at a site near the head of QB provides a possible explanation for the QB impairment. The replacement of two SQDGs located at the monomer-monomer interface by other lipids decreased the stability of the PSII dimer, resulting in an increase in the amount of PSII monomer in the mutant. The present results thus suggest that although SQDG binding in all of the PSII-binding sites is necessary to fully maintain the activity and stability of PSII, replacement of SQDG by other lipids can partially compensate for their functions.


Assuntos
Diglicerídeos/metabolismo , Lipídeos de Membrana/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Synechococcus/metabolismo , Tilacoides/metabolismo , Cristalização , Cristalografia por Raios X , Diglicerídeos/genética , Dimerização , Genes Bacterianos , Luminescência , Oxigênio/metabolismo , Complexo de Proteína do Fotossistema II/química , Conformação Proteica , Espectroscopia de Infravermelho com Transformada de Fourier , Synechococcus/genética
11.
Proc Natl Acad Sci U S A ; 113(45): 12727-12732, 2016 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-27729534

RESUMO

During photosynthesis, the light-driven oxidation of water performed by photosystem II (PSII) provides electrons necessary to fix CO2, in turn supporting life on Earth by liberating molecular oxygen. Recent high-resolution X-ray images of PSII show that the water-oxidizing center (WOC) is composed of an Mn4CaO5 cluster with six carboxylate, one imidazole, and four water ligands. FTIR difference spectroscopy has shown significant structural changes of the WOC during the S-state cycle of water oxidation, especially within carboxylate groups. However, the roles that these carboxylate groups play in water oxidation as well as how they should be properly assigned in spectra are unresolved. In this study, we performed a normal mode analysis of the WOC using the quantum mechanics/molecular mechanics (QM/MM) method to simulate FTIR difference spectra on the S1 to S2 transition in the carboxylate stretching region. By evaluating WOC models with different oxidation and protonation states, we determined that models of high-oxidation states, Mn(III)2Mn(IV)2, satisfactorily reproduced experimental spectra from intact and Ca-depleted PSII compared with low-oxidation models. It is further suggested that the carboxylate groups bridging Ca and Mn ions within this center tune the reactivity of water ligands bound to Ca by shifting charge via their π conjugation.

12.
Proc Natl Acad Sci U S A ; 113(3): 620-5, 2016 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-26715751

RESUMO

Photosystem II (PSII) extracts electrons from water at a Mn4CaO5 cluster using light energy and then transfers them to two plastoquinones, the primary quinone electron acceptor QA and the secondary quinone electron acceptor QB. This forward electron transfer is an essential process in light energy conversion. Meanwhile, backward electron transfer is also significant in photoprotection of PSII proteins. Modulation of the redox potential (Em) gap of QA and QB mainly regulates the forward and backward electron transfers in PSII. However, the full scheme of electron transfer regulation remains unresolved due to the unknown Em value of QB. Here, for the first time (to our knowledge), the Em value of QB reduction was measured directly using spectroelectrochemistry in combination with light-induced Fourier transform infrared difference spectroscopy. The Em(QB (-)/QB) was determined to be approximately +90 mV and was virtually unaffected by depletion of the Mn4CaO5 cluster. This insensitivity of Em(QB (-)/QB), in combination with the known large upshift of Em(QA (-)/QA), explains the mechanism of PSII photoprotection with an impaired Mn4CaO5 cluster, in which a large decrease in the Em gap between QA and QB promotes rapid charge recombination via QA (-).


Assuntos
Elétrons , Complexo de Proteína do Fotossistema II/metabolismo , Quinonas/metabolismo , Simulação por Computador , Eletrodos , Transporte de Elétrons , Manganês/metabolismo , Modelos Moleculares , Oxirredução , Espectroscopia de Infravermelho com Transformada de Fourier , Termodinâmica
13.
Biochemistry ; 57(19): 2828-2836, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29678104

RESUMO

Photosystem II (PSII) is a protein complex that performs water oxidation using light energy during photosynthesis. In PSII, electrons abstracted from water are eventually transferred to the secondary quinone electron acceptor, QB, and upon double reduction, QB is converted to quinol by binding two protons. Thus, excess electron transfer in PSII increases the pH of the stroma. In this study, to investigate the pH-dependent regulation of the electron flow in PSII, we have estimated the relaxation rate of the QB- radical anion in the pH region between 5 and 8 by direct monitoring of its population using light-induced Fourier transform infrared difference spectroscopy. The decay of QB- by charge recombination with the S2 state of the water oxidation center in PSII membranes was shown to be accelerated at higher pH, whereas that of QA- examined in the presence of a herbicide was virtually unaffected at pH ≤7.5 and slightly slowed at pH 8. These observations were consistent with the previous studies that included rather indirect monitoring of the QB- and QA- decays using fluorescence detection. The accelerated relaxation of QB- was explained by the shift of a redox equilibrium between QA- and QB- to the QA- side due to the decrease in the redox potential of QB at higher pH, which is induced by deprotonation of a single amino acid residue near QB. It is proposed that this pH-dependent QB- relaxation is one of the mechanisms of electron flow regulation in PSII for its photoprotection.


Assuntos
Benzoquinonas/química , Transporte de Elétrons/efeitos da radiação , Fotossíntese/genética , Complexo de Proteína do Fotossistema II/química , Ânions/química , Transporte de Elétrons/genética , Elétrons , Concentração de Íons de Hidrogênio , Cinética , Luz , Oxidantes/química , Oxirredução , Fotossíntese/efeitos da radiação , Complexo de Proteína do Fotossistema II/efeitos da radiação , Espectroscopia de Infravermelho com Transformada de Fourier , Spinacia oleracea/química , Água/química
14.
Biochemistry ; 57(32): 4803-4815, 2018 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-30015473

RESUMO

Photosynthetic water oxidation is performed at the Mn4CaO5 cluster in photosystem II. In this study, we investigated the effect of methanol, an analogue of water, on the water oxidation reaction and its interaction site using Fourier transform infrared (FTIR) difference and time-resolved infrared (TRIR) spectroscopies. Flash-induced FTIR difference measurement of the S-state cycle showed that methanol decreases mainly the efficiency of the S3 → S0 transition. TRIR measurement further showed that methanol slowed the rates of the S2 → S3 and S3 → S0 transitions. FTIR difference spectra upon the S1 → S2 transition exhibited prominent methanol-induced changes in the amide I and II bands of the main chains, whereas little change was observed in the bands of carboxylate groups, histidine side chains, and a water network in the vicinity of the Mn4CaO5 cluster. Similar tendencies were also observed with ethanol and 2-propanol. The C-O stretching vibration of methanol was further identified in the S2-minus-S1 spectrum using 18O-labeled methanol. These results indicate that methanol and small alcohols are bound near the Mn4CaO5 cluster but with no direct interaction. They probably replace a water molecule in a water channel around the Mn4CaO5 cluster, possibly interacting with a main chain amide. It is thus suggested that this replacement of water with methanol or a small alcohol inhibits water/proton transfer during the S2 → S3 and S3 → S0 transitions, which in turn provides experimental support for the view that these two transitions involve the water uptake and proton release processes.


Assuntos
Manganês/química , Metanol/química , Espectrofotometria Infravermelho/métodos , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Oxirredução , Fotossíntese
15.
Biochim Biophys Acta Bioenerg ; 1859(2): 129-136, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29174010

RESUMO

Light-induced Fourier transformed infrared (FTIR) difference spectroscopy is a powerful method to study the structures and reactions of redox cofactors involved in the photosynthetic electron transport chain. So far, most of the FTIR studies of the reactions of oxygenic photosynthesis have been performed using isolated photosystem I (PSI) and photosystem II (PSII) preparations, which, however, could be modified during isolation procedures. In this study, we developed a methodology to evaluate the photosynthetic activities of thylakoids using FTIR spectroscopy. FTIR difference spectra upon successive flashes using thylakoids from spinach exhibited signals typical of the S-state cycle at the Mn4CaO5 cluster and QB reactions in PSII with period-four and -two oscillations, respectively. Similar measurement in the presence of an artificial quinone as an exogenous electron acceptor showed features specific to the S-state cycle. Simulations of the oscillation patterns provided the quantum efficiencies of the S-state cycle and electron transfer in PSII. Moreover, FTIR measurement under continuous illumination on thylakoids in the presence of DCMU showed signals due to QA reduction and P700 oxidation simultaneously. From the relative amplitudes of marker bands of QA- and P700+, the molar ratio of photoactive PSII and PSI centers in thylakoids was estimated. FTIR analyses of the photo-reactions in thylakoids, which are more intact than isolated photosystems, will be useful in investigations of the photosynthetic mechanism especially by genetic modification of photosystem proteins.


Assuntos
Fotossíntese , Complexo de Proteína do Fotossistema II/química , Spinacia oleracea/enzimologia , Tilacoides/enzimologia , Complexo de Proteína do Fotossistema II/genética , Complexo de Proteína do Fotossistema II/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier , Spinacia oleracea/genética , Tilacoides/genética
16.
J Biol Chem ; 292(49): 20046-20057, 2017 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-29046348

RESUMO

In photosynthetic water oxidation, two water molecules are converted into one oxygen molecule and four protons at the Mn4CaO5 cluster in photosystem II (PSII) via the S-state cycle. Efficient proton exit from the catalytic site to the lumen is essential for this process. However, the exit pathways of individual protons through the PSII proteins remain to be identified. In this study, we examined the involvement of a hydrogen-bond network near the redox-active tyrosine YZ in proton transfer during the S-state cycle. We focused on spectroscopic analyses of a site-directed variant of D1-Asn-298, a residue involved in a hydrogen-bond network near YZ We found that the D1-N298A mutant of Synechocystis sp. PCC 6803 exhibits an O2 evolution activity of ∼10% of the wild-type. D1-N298A and the wild-type D1 had very similar features of thermoluminescence glow curves and of an FTIR difference spectrum upon YZ oxidation, suggesting that the hydrogen-bonded structure of YZ and electron transfer from the Mn4CaO5 cluster to YZ were little affected by substitution. In the D1-N298A mutant, however, the flash-number dependence of delayed luminescence showed a monotonic increase without oscillation, and FTIR difference spectra of the S-state cycle indicated partial and significant inhibition of the S2 → S3 and S3 → S0 transitions, respectively. These results suggest that the D1-N298A substitution inhibits the proton transfer processes in the S2 → S3 and S3 → S0 transitions. This in turn indicates that the hydrogen-bond network near YZ can be functional as a proton transfer pathway during photosynthetic water oxidation.


Assuntos
Ligação de Hidrogênio , Complexo de Proteína do Fotossistema II/química , Prótons , Synechocystis/fisiologia , Tirosina/metabolismo , Água/metabolismo , Mutagênese Sítio-Dirigida , Oxirredução , Oxigênio/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier , Synechocystis/genética
17.
J Biol Chem ; 292(18): 7474-7486, 2017 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-28302724

RESUMO

The special-pair chlorophyll (Chl) P680 in photosystem II has an extremely high redox potential (Em ) to enable water oxidation in photosynthesis. Significant positive-charge localization on one of the Chl constituents, PD1 or PD2, in P680+ has been proposed to contribute to this high Em To identify the Chl molecule on which the charge is mainly localized, we genetically introduced a hydrogen bond to the 131-keto C=O group of PD1 and PD2 by changing the nearby D1-Val-157 and D2-Val-156 residues to His, respectively. Successful hydrogen bond formation at PD1 and PD2 in the obtained D1-V157H and D2-V156H mutants, respectively, was monitored by detecting 131-keto C=O vibrations in Fourier transfer infrared (FTIR) difference spectra upon oxidation of P680 and the symmetrically located redox-active tyrosines YZ and YD, and they were simulated by quantum-chemical calculations. Analysis of the P680+/P680 FTIR difference spectra of D1-V157H and D2-V156H showed that upon P680+ formation, the 131-keto C=O frequency upshifts by a much larger extent in PD1 (23 cm-1) than in PD2 (<9 cm-1). In addition, thermoluminescence measurements revealed that the D1-V157H mutation increased the Em of P680 to a larger extent than did the D2-V156H mutation. These results, together with the previous results for the mutants of the His ligands of PD1 and PD2, lead to a definite conclusion that a charge is mainly localized to PD1 in P680.


Assuntos
Proteínas de Bactérias/química , Clorofila/química , Mutação de Sentido Incorreto , Synechocystis/química , Substituição de Aminoácidos , Proteínas de Bactérias/genética , Clorofila/genética , Ligação de Hidrogênio , Oxirredução , Synechocystis/genética
18.
J Am Chem Soc ; 139(27): 9364-9375, 2017 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-28635275

RESUMO

Photosynthetic water oxidation is performed at the Mn4CaO5 cluster in photosystem II (PSII). The protonation structures of amino acid residues and water molecules around the Mn4CaO5 cluster are crucial in water oxidation reactions. In this study, we determined the protonation state of a key His residue in water oxidation, D1-H337, that is directly hydrogen-bonded with the oxygen atom of the Mn4CaO5 cluster, using polarized attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy. Flash-induced polarized ATR-FTIR difference spectra upon the S1 → S2 transition of oriented PSII membranes showed broad negative and positive features at about 2600 and 2900 cm-1, respectively, with large dichroic ratios, accompanied by several minor peaks attributable to the Fermi resonance of a His NH vibration. Quantum mechanics/molecular mechanics (QM/MM) calculations well reproduced the characteristics of these features as the NτH stretching vibrations of D1-H337 in its protonated cation form. The spectral features were reversed in the S3 → S0 transition, indicating that this His remains protonated during the S-state cycle. The redox potential (Em) of the Mn4CaO5 cluster in the S1 → S2 transition, which was estimated from the QM/MM calculations, was found to be comparable to that of water oxidation when D1-H337 is protonated cation. It was thus concluded that the positive charge on the protonated D1-H337 plays an important role in retaining a high Em value of the Mn4CaO5 cluster throughout the reaction cycle to enable water oxidation.


Assuntos
Cálcio/química , Histidina/química , Manganês/química , Oxigênio/química , Complexo de Proteína do Fotossistema II/química , Água/química , Cálcio/metabolismo , Histidina/metabolismo , Manganês/metabolismo , Oxigênio/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Prótons , Teoria Quântica , Espectroscopia de Infravermelho com Transformada de Fourier , Água/metabolismo
19.
J Am Chem Soc ; 139(5): 2022-2029, 2017 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-28088851

RESUMO

Photosynthetic water oxidation performed at the Mn4CaO5 cluster in photosystem II plays a crucial role in energy production as electron and proton sources necessary for CO2 fixation. Molecular oxygen, a byproduct, is a source of the oxygenic atmosphere that sustains life on earth. However, the molecular mechanism of water oxidation is not yet well-understood. In the reaction cycle of intermediates called S states, the S2 → S3 transition is particularly important; it consists of multiple processes of electron transfer, proton release, and water insertion, and generates an intermediate leading to O-O bond formation. In this study, we monitored the reaction process during the S2 → S3 transition using time-resolved infrared spectroscopy to clarify its molecular mechanism. A change in the hydrogen-bond interaction of the oxidized YZ• radical, an immediate electron acceptor of the Mn4CaO5 cluster, was clearly observed as a ∼100 µs phase before the electron-transfer phase with a time constant of ∼350 µs. This observation provides strong experimental evidence that rearrangement of the hydrogen-bond network around YZ•, possibly due to the movement of a water molecule located near YZ• to the Mn site, takes place before the electron transfer. The electron transfer was coupled with proton release, as revealed by a relatively high deuterium kinetic isotope effect of 1.9. This proton release, which decreases the redox potential of the Mn4CaO5 cluster to facilitate electron transfer to YZ•, was proposed to determine, as a rate-limiting step, the relatively slow electron-transfer rate of the S2 → S3 transition.

20.
Biochem Biophys Res Commun ; 492(2): 218-223, 2017 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-28823918

RESUMO

Exposure to nanoparticles such as carbon nanotubes has been shown to cause pleural mesothelioma similar to that caused by asbestos, and has become an environmental health issue. Not only is the percutaneous absorption of nano-size titanium dioxide particles frequently considered problematic, but the possibility of absorption into the body through the pulmonary route is also a concern. Nevertheless, there are few reports of nano-size titanium dioxide particles on respiratory organ exposure and dynamics or on the mechanism of toxicity. In this study, we focused on the morphology as well as the size of titanium dioxide particles. In comparing the effects between nano-size anatase and rutile titanium dioxide on human-derived pleural mesothelial cells, the anatase form was shown to be actively absorbed into cells, producing reactive oxygen species and causing oxidative damage to DNA. In contrast, we showed for the first time that the rutile form is not easily absorbed by cells and, therefore, does not cause oxidative DNA damage and is significantly less damaging to cells. These results suggest that with respect to the toxicity of titanium dioxide particles on human-derived mesothelial cells, the crystal form rather than the particle size has a greater effect on cellular absorption. Also, it was indicated that the difference in absorption is the primary cause of the difference in the toxicity against mesothelial cells.


Assuntos
Dano ao DNA/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Nanoestruturas/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Titânio/toxicidade , Linhagem Celular , Cristalização , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Humanos , Tamanho da Partícula , Pleura/citologia , Pleura/efeitos dos fármacos , Pleura/metabolismo , Pleura/patologia , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA