Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
BMC Med Imaging ; 17(1): 13, 2017 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-28193201

RESUMO

BACKGROUND: Positron Emission Tomography - Computed Tomography (PET/CT) imaging is the basis for the evaluation of response-to-treatment of several oncological diseases. In practice, such evaluation is manually performed by specialists, which is rather complex and time-consuming. Evaluation measures have been proposed, but with questionable reliability. The usage of before and after-treatment image descriptors of the lesions for treatment response evaluation is still a territory to be explored. METHODS: In this project, Artificial Neural Network approaches were implemented to automatically assess treatment response of patients suffering from neuroendocrine tumors and Hodgkyn lymphoma, based on image features extracted from PET/CT. RESULTS: The results show that the considered set of features allows for the achievement of very high classification performances, especially when data is properly balanced. CONCLUSIONS: After synthetic data generation and PCA-based dimensionality reduction to only two components, LVQNN assured classification accuracies of 100%, 100%, 96.3% and 100% regarding the 4 response-to-treatment classes.


Assuntos
Doença de Hodgkin/diagnóstico por imagem , Tumores Neuroendócrinos/diagnóstico por imagem , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Algoritmos , Feminino , Doença de Hodgkin/terapia , Humanos , Masculino , Redes Neurais de Computação , Tumores Neuroendócrinos/terapia , Reconhecimento Automatizado de Padrão/métodos , Reprodutibilidade dos Testes , Resultado do Tratamento , Imagem Corporal Total/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA