Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 21(16)2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34451009

RESUMO

Detecting trace amounts of explosives to ensure personal safety is important, and this is possible by using laser-based spectroscopy techniques. We performed surface-enhanced Raman scattering (SERS) using plasmonic nanogap substrates for the solution phase detection of some nitro-based compounds, taking advantage of the hot spot at the nanogap. An excitation wavelength of 785 nm with an incident power of as low as ≈0.1 mW was used to excite the nanogap substrates. Since both RDX and PETN cannot be dissolved in water, acetone was used as a solvent. TNT was dissolved in water as well as in hexane. The main SERS peaks of TNT, RDX, and PETN were clearly observed down to the order of picomolar concentration. The variations in SERS spectra observed from different explosives can be useful in distinguishing and identifying different nitro-based compounds. This result indicates that our nanogap substrates offer an effective approach for explosives identification.

2.
Polymers (Basel) ; 16(7)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38611166

RESUMO

Detecting the presence of explosives is important to protect human lives during military conflicts and peacetime. Gas-phase detection of explosives can make use of the change of material properties, which can be sensitive to environmental conditions such as temperature and humidity. This paper describes a remote-controlled automatic shutter method for the environmental impact assessment of photoluminescence (PL) sensors under near-open conditions. Utilizing the remote-sensing method, we obtained environmental effects without being exposed to sensing vapor molecules and explained how PL intensity was influenced by the temperature, humidity, and exposure time. We also developed a theoretical model including the effect of exciton diffusion for PL quenching, which worked well under limited molecular diffusions. Incomplete recovery of PL intensity or the degradation effect was considered as an additional factor in the model.

3.
Spectrochim Acta A Mol Biomol Spectrosc ; 311: 123996, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38350410

RESUMO

Non-invasive and passive detection of explosives in the vapor phase is advantageous for military, counter-terrorism, and homeland security applications. Detection of explosives using SERS has been an active research topic. However, the vapor pressures of most explosives are low at room temperature, and consequently, the vapor phase detection by SERS is highly challenging without intentionally heating explosive powder to increase the vapor pressure. In this work, we report the rapid and sensitive detection of 2,4,6-trinitrotoluene (TNT) and 2,4-dinitrotoluene (2,4-DNT) in the vapor phase, using a gold nanogap (AuNG) SERS substrate. The AuNG SERS substrate was fabricated with electron beam evaporation, rapid thermal annealing, and wet etching. SERS measurements were carried out with an incident power as low as 0.56 mW at 785 nm. To prevent the condensation effect, the TNT and 2,4-DNT powders inside the cuvette were taken out before inserting the nanogap substrate. Our SERS results demonstrate the feasibility of the non-invasive detection of vapor phase explosives under ambient conditions.

4.
ACS Omega ; 9(26): 28463-28475, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38973891

RESUMO

The discharge of toxic dye effluents from industry is a major concern for environmental pollution and toxicity. These toxic dyes can be efficiently removed from waste streams using a photocatalysis process involving visible light. Due to its simple synthesis procedure, inexpensive precursor, and robust stability, graphitic carbon nitride (g-C3N4, or CN) has been used as a visible light responsive catalyst for the degradation of dyes with mediocre performance because it is limited by its low visible light harvesting capability due to its wide bandgap and fast carrier recombination rate. To overcome these limitations and enhance the performance of g-C3N4, it was coupled with a narrow bandgap copper tin sulfide (CTS) semiconductor to form a p-n heterojunction. CTS and g-C3N4 were selected due to their good stability, low toxicity, ease of synthesis, layered sheet/plate-like morphology, and relatively abundant precursors. Accordingly, a series of copper tin sulfide/graphitic carbon nitride nanocomposites (CTS/g-C3N4) with varying CTS contents were successfully synthesized via a simple two-step process involving thermal pyrolysis and coprecipitation for visible-light-induced photocatalytic degradation of methyl orange (MO) dye. The photocatalytic activity results showed that the 50%(wt/wt) CTS/g-C3N4 composite displayed a remarkable degradation efficiency of 95.6% for MO dye under visible light illumination for 120 min, which is higher than that of either pristine CTS or g-C3N4. The improved performance is attributed to the extended light absorption range (due to the optimized bandgap), effective suppression of photoinduced electron-hole recombination, and improved charge transfer that arose from the formation of a p-n heterojunction, as evidenced by electrochemical impedance spectroscopy (EIS), photocurrent, and photoluminescence results. Moreover, the results of the reusability study showed that the composite has excellent stability, indicating its potential for the degradation of MO and other toxic organic dyes from waste streams.

5.
Polymers (Basel) ; 14(3)2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35160472

RESUMO

Explosive detection has become an increased priority in recent years for homeland security and counter-terrorism applications. Although drones may not be able to pinpoint the exact location of the landmines and explosives, the identification of the explosive vapor present in the surrounding air provides significant information and comfort to the personnel and explosives removal equipment operators. Several optical methods, such as the luminescence quenching of fluorescent polymers, have been used for explosive detection. In order to utilize sensing technique via unmanned vehicles or drones, it is very important to study how the air flow affects the luminescence quenching. We investigated the effects of air flow on the quenching efficiency of Poly(2,5-di(2'-ethylhexyl)-1,4-ethynylene) (PEE) by TNT molecules. We treated the TNT molecules incorporated into the polymer film as non-radiative recombination centers, and found that the time derivative of the non-radiative recombination rates was greater with faster air flows. Our investigations show that relatively high air flow into an optical sensing part is crucial to achieving fast PL quenching. We also found that a "continuous light excitation" condition during the exposure of TNT vapor greatly influences the PL quenching.

6.
Biosensors (Basel) ; 12(12)2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36551086

RESUMO

Estradiol is known as one of the most potent estrogenic endocrine-disrupting chemicals (EDCs) that may cause various health implications on human growth, metabolism regulation, the reproduction system, and possibly cancers. The detection of these EDCs in our surroundings, such as in foods and beverages, is important to prevent such harmful effects on humans. Aptamers are a promising class of bio-receptors for estradiol detection due to their chemical stability and high affinity. With the development of aptamer technology, electrochemical aptasensing became an important tool for estradiol detection. This review provides detailed information on various technological interventions in electrochemical estradiol detection in solutions and categorized the aptasensing mechanisms, aptamer immobilization strategies, and electrode materials. Moreover, we also discussed the role of estradiol in human physiology and signaling mechanisms. The level of estradiol in circulation is associated with normal and diseased conditions. The aptamer-based electrochemical sensing techniques are powerful and sensitive for estradiol detection.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Disruptores Endócrinos , Humanos , Estradiol , Técnicas Eletroquímicas/métodos , Eletrodos , Disruptores Endócrinos/análise , Técnicas Biossensoriais/métodos , Limite de Detecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA