Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Int J Clin Oncol ; 27(12): 1805-1817, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36264378

RESUMO

BACKGROUND: Here, we report the results of the Japanese subgroup of the phase 3 KEYNOTE-048 study of pembrolizumab alone, pembrolizumab plus platinum and 5-fluorouracil (pembrolizumab-chemotherapy), or cetuximab plus platinum and 5-fluorouracil (EXTREME) in previously untreated recurrent/metastatic (R/M) head and neck squamous cell carcinoma (HNSCC). METHODS: Primary end points were overall survival (OS) and progression-free survival (PFS). Efficacy was evaluated in patients with PD-L1 combined positive score (CPS) ≥ 20 and ≥ 1 and the total Japanese subgroup (n = 67). RESULTS: At data cutoff (25 February 2019), pembrolizumab led to longer OS versus EXTREME in the PD-L1 CPS ≥ 20 subgroup (median, 28.2 vs. 13.3 months; HR, 0.29 [95% CI 0.09-0.89]) and to similar OS in the total Japanese (23.4 vs. 13.6 months; HR, 0.51 [95% CI 0.25-1.05]) and CPS ≥ 1 subgroups (22.6 vs. 15.8 months; HR, 0.66 [95% CI 0.31-1.41]). Pembrolizumab-chemotherapy led to similar OS versus EXTREME in the PD-L1 CPS ≥ 20 (median, 18.1 vs. 15.8 months; HR, 0.72 [95% CI 0.23-2.19]), CPS ≥ 1 (12.6 vs. 15.8 months; HR, 1.19 [95% CI 0.55-2.58]), and total Japanese subgroups (12.6 vs. 13.3 months; unadjusted HR, 1.10 [95% CI 0.55-2.22]). Median PFS was similar for pembrolizumab and pembrolizumab-chemotherapy versus EXTREME in all subgroups. Grades 3-5 treatment-related adverse events occurred in 5 (22%), 19 (76%), and 17 (89%) patients receiving pembrolizumab, pembrolizumab-chemotherapy, and EXTREME, respectively. One patient receiving pembrolizumab-chemotherapy died because of treatment-related pneumonitis. CONCLUSION: These results support the use of first-line pembrolizumab and pembrolizumab-chemotherapy for Japanese patients with R/M HNSCC. Clinical trial registry ClinicalTrials.gov, NCT02358031.


Assuntos
Antígeno B7-H1 , Neoplasias de Cabeça e Pescoço , Humanos , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Fluoruracila , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Japão , Recidiva Local de Neoplasia/tratamento farmacológico , Recidiva Local de Neoplasia/etiologia , Platina , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico
2.
Int J Mol Sci ; 23(16)2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-36012427

RESUMO

Advanced-stage oral squamous cell carcinoma (OSCC) patients are treated with combination therapies, such as surgery, radiation, chemotherapy, and immunotherapy. However, OSCC cells acquire resistance to these treatments, resulting in local recurrence and distant metastasis. The identification of genes involved in drug resistance is essential for improving the treatment of this disease. In this study, we applied chromatin immunoprecipitation sequencing (ChIP-Seq) to profile active enhancers. For that purpose, we used OSCC cell lines that had been exposed to cetuximab for a prolonged period. In total, 64 chromosomal loci were identified as active super-enhancers (SE) according to active enhancer marker histone H3 lysine 27 acetylation (H3K27ac) ChIP-Seq. In addition, a total of 131 genes were located in SE regions, and 34 genes were upregulated in OSCC tissues by TCGA-OSCC analysis. Moreover, high expression of four genes (C9orf89; p = 0.035, CENPA; p = 0.020, PISD; p = 0.0051, and TRAF2; p = 0.0075) closely predicted a poorer prognosis for OSCC patients according to log-rank tests. Increased expression of the four genes (mRNA Z-score ≥ 0) frequently co-occurred in TCGA-OSCC analyses. The high and low expression groups of the four genes showed significant differences in prognosis, suggesting that there are clear differences in the pathways based on the underlying gene expression profiles. These data indicate that potential stratified therapeutic strategies could be used to overcome resistance to drugs (including cetuximab) and further improve responses in drug-sensitive patients.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Linhagem Celular Tumoral , Cetuximab , Regulação Neoplásica da Expressão Gênica , Neoplasias de Cabeça e Pescoço/genética , Humanos , Neoplasias Bucais/tratamento farmacológico , Neoplasias Bucais/genética , Neoplasias Bucais/metabolismo , Prognóstico , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética
3.
J Hum Genet ; 66(5): 519-534, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33177704

RESUMO

Our recent research has revealed that passenger strands of certain microRNAs (miRNAs) function as tumor-suppressive miRNAs in cancer cells, e.g., miR-101-5p, miR-143-5p, miR-144-5p, miR-145-3p, and miR-150-3p. Thus, they are important in cancer pathogenesis. Analysis of the miRNA expression signature of breast cancer (BrCa) showed that the expression levels of two miRNAs derived from pre-miR-99a (miR-99a-5p and miR-99a-3p) were suppressed in cancerous tissues. The aim of this study was to identify oncogenic genes controlled by pre-miR-99a that are closely involved in the molecular pathogenesis of BrCa. A total of 113 genes were identified as targets of pre-miR-99a regulation (19 genes modulated by miR-99a-5p, and 95 genes regulated by miR-99a-3p) in BrCa cells. Notably, FAM64A was targeted by both of the miRNAs. Among these targets, high expression of 16 genes (C5orf22, YOD1, SLBP, F11R, C12orf49, SRPK1, ZNF250, ZNF695, CDK1, DNMT3B, TRIM25, MCM4, CDKN3, PRPS, FAM64A, and DESI2) significantly predicted reduced survival of BrCa patients based upon The Cancer Genome Atlas (TCGA) database. In this study, we focused on FAM64A and investigated the relationship between FAM64A expression and molecular pathogenesis of BrCa subtypes. The upregulation of FAM64A was confirmed in BrCa clinical specimens. Importantly, the expression of FAM64A significantly differed between patients with Luminal-A and Luminal-B subtypes. Our data strongly suggest that the aberrant expression of FAM64A is involved in the malignant transformation of BrCa. Our miRNA-based approaches (identification of tumor-suppressive miRNAs and their controlled targets) will provide novel information regarding the molecular pathogenesis of BrCa.


Assuntos
Neoplasias da Mama/genética , Estrogênios , Regulação Neoplásica da Expressão Gênica/genética , Genes Supressores de Tumor , Peptídeos e Proteínas de Sinalização Intracelular/genética , MicroRNAs/genética , Proteínas de Neoplasias/genética , Neoplasias Hormônio-Dependentes/genética , Proteínas Nucleares/genética , Oncogenes , Progesterona , RNA Neoplásico/genética , Aminopiridinas/administração & dosagem , Aminopiridinas/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Benzimidazóis/administração & dosagem , Benzimidazóis/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/mortalidade , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Regulação para Baixo , Feminino , Genes erbB-2 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/biossíntese , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Estimativa de Kaplan-Meier , MicroRNAs/fisiologia , Pessoa de Meia-Idade , Proteínas de Neoplasias/biossíntese , Proteínas de Neoplasias/fisiologia , Neoplasias Hormônio-Dependentes/tratamento farmacológico , Neoplasias Hormônio-Dependentes/mortalidade , Neoplasias Hormônio-Dependentes/patologia , Proteínas Nucleares/biossíntese , Proteínas Nucleares/fisiologia , Piperazinas/administração & dosagem , Piperazinas/uso terapêutico , Prognóstico , Intervalo Livre de Progressão , Piridinas/administração & dosagem , Piridinas/uso terapêutico , Interferência de RNA , RNA Neoplásico/fisiologia , RNA Interferente Pequeno/genética , Resultado do Tratamento
4.
J Biol Chem ; 294(29): 11062-11086, 2019 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-31171722

RESUMO

G protein-coupled receptors (GPCRs) are the largest gene family of cell membrane-associated molecules mediating signal transmission, and their involvement in key physiological functions is well-established. The ability of GPCRs to regulate a vast array of fundamental biological processes, such as cardiovascular functions, immune responses, hormone and enzyme release from endocrine and exocrine glands, neurotransmission, and sensory perception (e.g. vision, odor, and taste), is largely due to the diversity of these receptors and the layers of their downstream signaling circuits. Dysregulated expression and aberrant functions of GPCRs have been linked to some of the most prevalent human diseases, which renders GPCRs one of the top targets for pharmaceutical drug development. However, the study of the role of GPCRs in tumor biology has only just begun to make headway. Recent studies have shown that GPCRs can contribute to the many facets of tumorigenesis, including proliferation, survival, angiogenesis, invasion, metastasis, therapy resistance, and immune evasion. Indeed, GPCRs are widely dysregulated in cancer and yet are underexploited in oncology. We present here a comprehensive analysis of GPCR gene expression, copy number variation, and mutational signatures in 33 cancer types. We also highlight the emerging role of GPCRs as part of oncocrine networks promoting tumor growth, dissemination, and immune evasion, and we stress the potential benefits of targeting GPCRs and their signaling circuits in the new era of precision medicine and cancer immunotherapies.


Assuntos
Imunoterapia , Neoplasias/terapia , Receptores Acoplados a Proteínas G/metabolismo , Animais , Variações do Número de Cópias de DNA , Humanos , Mutação , Neoplasias/genética , Neoplasias/fisiopatologia , Transdução de Sinais
5.
Cancer Sci ; 111(4): 1392-1406, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31975570

RESUMO

Analysis of microRNA (miRNA) regulatory networks is useful for exploring novel biomarkers and therapeutic targets in cancer cells. The Cancer Genome Atlas dataset shows that low expression of both strands of pre-miR-101 (miR-101-5p and miR-101-3p) significantly predicted poor prognosis in clear cell renal cell carcinoma (ccRCC). The functional significance of miR-101-5p in cancer cells is poorly understood. Here, we focused on miR-101-5p to investigate the antitumor function and its regulatory networks in ccRCC cells. Ectopic expression of mature miRNAs or siRNAs was investigated in cancer cell lines to characterize cell function, ie, proliferation, apoptosis, migration, and invasion. Genome-wide gene expression and in silico database analyses were undertaken to predict miRNA regulatory networks. Expression of miR-101-5p caused cell cycle arrest and apoptosis in ccRCC cells. Downstream neighbor of son (DONSON) was directly regulated by miR-101-5p, and its aberrant expression was significantly associated with shorter survival in propensity score-matched analysis (P = .0001). Knockdown of DONSON attenuated ccRCC cell aggressiveness. Several replisome genes controlled by DONSON and their expression were closely associated with ccRCC pathogenesis. The antitumor miR-101-5p/DONSON axis and its modulated replisome genes might be a novel diagnostic and therapeutic target for ccRCC.


Assuntos
Carcinoma de Células Renais/genética , Proteínas de Ciclo Celular/genética , Proliferação de Células/genética , MicroRNAs/genética , Proteínas Nucleares/genética , Idoso , Apoptose/genética , Carcinoma de Células Renais/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Masculino , Pessoa de Meia-Idade , Interferência de RNA , Transdução de Sinais/genética
6.
Dev Biol ; 411(2): 183-194, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26872874

RESUMO

Angiogenesis, the formation of new blood vessels by remodeling and growth of pre-existing vessels, is a highly orchestrated process that requires a tight balance between pro-angiogenic and anti-angiogenic factors and the integration of their corresponding signaling networks. The family of Rho GTPases, including RhoA, Rac1, and Cdc42, play a central role in many cell biological processes that involve cytoskeletal changes and cell movement. Specifically for Rac1, we have shown that excision of Rac1 using a Tie2-Cre animal line results in embryonic lethality in midgestation (embryonic day (E) 9.5), with multiple vascular defects. However, Tie2-Cre can be also expressed during vasculogenesis, prior to angiogenesis, and is active in some hematopoietic precursors that can affect vessel formation. To circumvent these limitations, we have now conditionally deleted Rac1 in a temporally controlled and endothelial-restricted fashion using Cdh5(PAC)-iCreERT2 transgenic mice. In this highly controlled experimental in vivo system, we now show that Rac1 is required for embryonic vascular integrity and angiogenesis, and for the formation of superficial and deep vascular networks in the post-natal developing retina, the latter involving a novel specific function for Rac1 in vertical blood vessel sprouting. Aligned with these findings, we show that RAC1 is spatially involved in endothelial cell migration, invasion, and radial sprouting activities in 3D collagen matrix in vitro models. Hence, Rac1 and its downstream molecules may represent potential anti-angiogeneic therapeutic targets for the treatment of many human diseases that involve aberrant neovascularization and blood vessel overgrowth.


Assuntos
Células Endoteliais/citologia , Regulação da Expressão Gênica no Desenvolvimento , Neovascularização Fisiológica , Neuropeptídeos/fisiologia , Retina/embriologia , Vasos Retinianos/fisiologia , Proteínas rac1 de Ligação ao GTP/fisiologia , Alelos , Animais , Movimento Celular , Endotélio Vascular/metabolismo , Feminino , Genes Reporter , Genótipo , Células Endoteliais da Veia Umbilical Humana , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neuropeptídeos/genética , RNA Interferente Pequeno/metabolismo , Vasos Retinianos/embriologia , Proteínas rac1 de Ligação ao GTP/genética
7.
Br J Cancer ; 117(3): 409-420, 2017 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-28641312

RESUMO

BACKGROUND: Despite recent advancements, metastatic castration-resistant prostate cancer (CRPC) is not considered curative. Novel approaches for identification of therapeutic targets of CRPC are needed. METHODS: Next-generation sequencing revealed 945-1248 miRNAs from each lethal mCRPC sample. We constructed miRNA expression signatures of CRPC by comparing the expression of miRNAs between CRPC and normal prostate tissue or hormone-sensitive prostate cancer (HSPC). Genome-wide gene expression studies and in silico analyses were carried out to predict miRNA regulation and investigate the functional significance and clinical utility of the novel oncogenic pathways regulated by these miRNAs in prostate cancer (PCa). RESULTS: Based on the novel miRNA expression signature of CRPC, miR-145-5p and miR-145-3p were downregulated in CRPC. By focusing on miR-145-3p, which is a passenger strand and has not been well studied in previous reports, we showed that miR-145-3p targeted 4 key molecules, i.e., MELK, NCAPG, BUB1, and CDK1, in CPRC. These 4 genes significantly predicted survival in patients with PCa. CONCLUSIONS: Small RNA sequencing for lethal CRPC and in silico analyses provided novel therapeutic targets for CRPC.


Assuntos
Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/patologia , Proteínas Argonautas/genética , Proteína Quinase CDC2 , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Simulação por Computador , Quinases Ciclina-Dependentes/genética , Intervalo Livre de Doença , Regulação para Baixo , Expressão Gênica , Estudo de Associação Genômica Ampla , Humanos , Metástase Linfática , Masculino , Pessoa de Meia-Idade , Metástase Neoplásica , Estadiamento de Neoplasias , Proteínas Serina-Treonina Quinases/genética , Complexo de Inativação Induzido por RNA , Análise de Sequência de RNA , Taxa de Sobrevida
8.
J Hum Genet ; 62(1): 87-96, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27734836

RESUMO

The G-protein-coupled receptor (GPCR) family is the largest family of cell-surface receptors involved in signal transduction. Aberrant expression of GPCRs and G proteins are frequently associated with prevalent human diseases, including cancer. In fact, GPCRs represent the therapeutic targets of more than a quarter of the clinical drugs currently on the market. MiRNAs (miRNAs) are also aberrantly expressed in many human cancers, and they have significant roles in the initiation, development and metastasis of human malignancies. Recent studies have revealed that dysregulation of miRNAs and their target genes expression are associated with cancer progression. The emerging information suggests that miRNAs play an important role in the fine tuning of many signaling pathways, including GPCR signaling. We summarize our current knowledge of the individual functions of miRNAs regulated by GPCRs and GPCR signaling-associated molecules, and miRNAs that regulate the expression and activity of GPCRs, their endogenous ligands and their coupled heterotrimeric G proteins in human cancer.


Assuntos
Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Neoplasias/genética , Receptores Acoplados a Proteínas G/genética , Transdução de Sinais/genética , Progressão da Doença , Perfilação da Expressão Gênica , Proteínas Heterotriméricas de Ligação ao GTP/genética , Humanos , Neoplasias/patologia
9.
Crit Rev Oncol Hematol ; 186: 103988, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37086955

RESUMO

Traditional therapeutic approaches for malignant melanoma, have proved to be limited and/or ineffective, especially with respect to their role in improving patient survival and tumor recurrence. In this regard, immunotherapy has been demonstrated to be a promising therapeutic alternative, boosting antitumor responses through the modulation of cell signaling pathways involved in the effector mechanisms of the immune system, particularly, the so-called "immunological checkpoints". Clinical studies on the efficacy and safety of immunotherapeutic regimens, alone or in combination with other antitumor approaches, have increased dramatically in recent decades, with very encouraging results. Hence, this review will discuss the current immunotherapeutic regimens used to treat malignant melanoma, as well as the molecular and cellular mechanisms involved. In addition, current clinical studies that have investigated the use, efficacy, and adverse events of immunotherapy in melanoma will also be discussed.


Assuntos
Melanoma , Neoplasias Cutâneas , Humanos , Melanoma/tratamento farmacológico , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/terapia , Imunoterapia/métodos , Melanoma Maligno Cutâneo
10.
Biochem Biophys Res Commun ; 418(2): 378-83, 2012 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-22266319

RESUMO

Recently, many studies suggest that microRNAs (miRNAs) contribute to the development, invasion and metastasis of various types of human cancers. Our recent study revealed that expression of microRNA-133a (miR-133a) was significantly reduced in head and neck squamous cell carcinoma (HNSCC) and that restoration of miR-133a inhibited cell proliferation, migration and invasion in HNSCC cell lines, suggesting that miR-133a function as a tumor suppressor. Genome-wide gene expression analysis of miR-133a transfectants and TargetScan database showed that moesin (MSN) was a promising candidate of miR-133a target gene. MSN is a member of the ERM (ezrin, radixin and moesin) protein family and ERM function as cross-linkers between plasma membrane and actin-based cytoskeleton. The functions of MSN in cancers are controversial in previous reports. In this study, we focused on MSN and investigated whether MSN was regulated by tumor suppressive miR-133a and contributed to HNSCC oncogenesis. Restoration of miR-133a in HNSCC cell lines (FaDu, HSC3, IMC-3 and SAS) suppressed the MSN expression both in mRNA and protein level. Silencing study of MSN in HNSCC cell lines demonstrated significant inhibitions of cell proliferation, migration and invasion activities in si-MSN transfectants. In clinical specimen with HNSCC, the expression level of MSN was significantly up-regulated in cancer tissues compared to adjacent non-cancerous tissues. These data suggest that MSN may function as oncogene and is regulated by tumor suppressive miR-133a. Our analysis data of novel tumor-suppressive miR-133a-mediated cancer pathways could provide new insights into the potential mechanisms of HNSCC oncogenesis.


Assuntos
Carcinoma de Células Escamosas/patologia , Regulação Neoplásica da Expressão Gênica , Neoplasias de Cabeça e Pescoço/patologia , MicroRNAs/metabolismo , Proteínas dos Microfilamentos/genética , Idoso , Carcinoma de Células Escamosas/genética , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Feminino , Estudo de Associação Genômica Ampla , Neoplasias de Cabeça e Pescoço/genética , Humanos , Masculino , Pessoa de Meia-Idade , Invasividade Neoplásica , Carcinoma de Células Escamosas de Cabeça e Pescoço
11.
Biochem Biophys Res Commun ; 417(1): 588-93, 2012 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-22178073

RESUMO

We have previously found that restoration of tumor suppressive microRNA-1 (miR-1), induced cell apoptosis in bladder cancer (BC) cell lines. However, the apoptosis mechanism induced by miR-1 was not fully elucidated. Alternative splicing of mRNA precursors provides cancer cells with opportunities to translate many oncogenic protein variants, which promote cell proliferation and survival under unpreferable condition for cancer development. Serine/arginine-rich (SR) protein family, which involved in alternative pre-mRNA splicing, plays a critical role for regulating apoptosis by splicing apoptosis-related genes. However, transcriptional regulation of SR proteins, themselves, has not been elucidated. In this study, we focused on splicing factor serine/arginine-rich 9 (SRSF9/SRp30c) on the basis of our previous genome-wide gene expression analysis using miR-1-transfected BC cell lines because putative target sites of miR-1 are existed in 3'-untranslated region (UTR) of SRSF9 mRNA. The expression levels of mRNA of SRSF9 were extremely reduced in the miR-1 transfectants. A luciferase activity significantly decreased in the transfectants suggesting that actual binding occurred between miR-1 and 3'UTR of SRSF9 mRNA. Loss-of-function assays demonstrated that significant inhibitions of cell proliferation, migration, and invasion were observed in the si-SRSF9 transfectants. Apoptosis assays demonstrated that cell apoptosis fraction increased and that caspase-3/7 was activated in the si-SRSF9 transfectants. Our data indicated that tumor suppressive miR-1 induces apoptosis through direct inhibition of SRSF9 in BC. The identification of molecular mechanisms between miRNAs and SR proteins could provide novel apoptosis pathways and their epigenetic regulations and offer new strategies for BC treatment.


Assuntos
Apoptose , Regulação Neoplásica da Expressão Gênica , Genes Supressores de Tumor , MicroRNAs/metabolismo , Proteínas Nucleares/genética , Proteínas de Ligação a RNA/genética , Neoplasias da Bexiga Urinária/metabolismo , Neoplasias da Bexiga Urinária/patologia , Caspase 3/biossíntese , Caspase 7/biossíntese , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Técnicas de Silenciamento de Genes , Humanos , MicroRNAs/genética , Invasividade Neoplásica , Proteínas Nucleares/antagonistas & inibidores , Proteínas de Ligação a RNA/antagonistas & inibidores , Fatores de Processamento de Serina-Arginina
12.
J Hum Genet ; 57(9): 556-63, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22718022

RESUMO

MicroRNAs (miRNAs) are a class of small, non-coding RNA molecules consisting of 19-22 nucleotides that are involved in a variety of biological processes, including development, differentiation, apoptosis and cell proliferation. In cancer research, a growing body of evidence has indicated that miRNAs are aberrantly expressed in many types of human cancers and can function either as tumor suppressors or oncogenes. Bioinformatic predictions suggest that miRNAs regulate more than 30% of protein-coding genes. Aberrant expression of miRNAs in cancer cells causes destruction of miRNA-regulated messenger RNA networks. Therefore, the identification of miRNA-regulated cancer pathways is important for understanding the molecular mechanisms of human cancer. Searching for the aberrant expression of miRNAs in cancer cells is the first step in the functional analysis of miRNAs in cancer cells. Genome-wide miRNA expression signatures can rapidly and precisely reveal aberrant expression of miRNA in cancers. The miRNA expression signatures of human cancers have revealed that miR-375 is significantly downregulated in cancer cells. Our recent data on maxillary sinus, hypopharyngeal and esophageal squamous cell carcinomas have suggested that miR-375 is frequently downregulated and functions as a tumor suppressor that targets several oncogenic genes in cancer cells. In this review, we focus on several types of human squamous cell carcinoma and describe the aberrant expression of miRNAs and the cancer pathways they regulate in these diseases.


Assuntos
Carcinoma de Células Escamosas/genética , Neoplasias Esofágicas/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias de Cabeça e Pescoço/genética , MicroRNAs/metabolismo , Carcinoma de Células Escamosas/metabolismo , Neoplasias Esofágicas/metabolismo , Perfilação da Expressão Gênica , Neoplasias de Cabeça e Pescoço/metabolismo , Humanos , MicroRNAs/genética , Transdução de Sinais
13.
J Hum Genet ; 57(1): 38-45, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22089643

RESUMO

Analysis of the microRNA (miRNA) expression signature of lung squamous cell carcinoma (lung-SCC) revealed that the expression levels of miR-133a were significantly reduced in cancer tissues compared with normal tissues. In this study, we focused on the functional significance of miR-133a in cancer cell lines derived from lung-SCC and the identification of miR-133a-regulated novel cancer networks in lung-SCC. Restoration of miR-133a expression in PC10 and H157 cell lines resulted in significant inhibition of cell proliferation, suggesting that miR-133a functions as a tumor suppressor. We used genome-wide gene expression analysis to identify the molecular targets of miR-133a regulation. Gene expression data and web-based searching revealed several candidate genes, including transgelin 2 (TAGLN2), actin-related protein2/3 complex, subunit 5, 16kDa (ARPC5), LAG1 homolog, ceramide synthase 2 (LASS2) and glutathione S-transferase pi 1 (GSTP1). ARPC5 and GSTP1 likely represent bona fide targets as their expression is elevated in lung-SCC clinical specimens. Furthermore, transient transfection of miR-133a, repressed ARPC5 and GSTP1 mRNA and protein levels. As cell proliferation was significantly inhibited in lung-SCC cells following RNAi knock down of either gene, ARPC5 and GSTP1 may function as oncogenes in the development of lung-SCC. The identification of a tumor suppressive miRNA and the novel cancer pathways it regulates could provide new insights into potential molecular mechanisms of lung-SCC carcinogenesis.


Assuntos
Carcinoma de Células Escamosas/genética , Redes Reguladoras de Genes/genética , Genes Supressores de Tumor , Neoplasias Pulmonares/genética , MicroRNAs/genética , Idoso , Idoso de 80 Anos ou mais , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Proliferação de Células , Regulação para Baixo/genética , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Inativação Gênica , Estudos de Associação Genética , Glutationa S-Transferase pi/genética , Glutationa S-Transferase pi/metabolismo , Humanos , Neoplasias Pulmonares/patologia , Masculino , MicroRNAs/metabolismo , Pessoa de Meia-Idade , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transfecção
14.
J Hum Genet ; 57(11): 691-9, 2012 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-22854542

RESUMO

microRNAs (miRNAs) have key roles in human tumorigenesis, tumor progression and metastasis. miRNAs are aberrantly expressed in many human cancers and can function as tumor suppressors or oncogenes that target many cancer-related genes. This study seeks to identify novel miRNA-regulated molecular pathways in prostate cancer (PCa). The miRNA expression signature in clinical specimens of PCa showed that 56 miRNAs were significantly downregulated in PCa compared with non-PCa tissues. We focused on the top four downregulated miRNAs (miR-187, miR-205, miR-222 and miR-31) to investigate their functional significance in PCa cells. Expression levels of these four miRNAs were validated in PCa specimens (15 PCa tissues and 17 non-PCa tissues) to confirm that they were significantly reduced in these PCa tissues. Gain-of-function analysis demonstrated that miR-222 and miR-31 inhibited cell proliferation, invasion and migration in PCa cell lines (PC3 and DU145), suggesting that miR-222 and miR-31 may act as tumor suppressors in PCa. Genome-wide gene expression analysis using miR-222 or miR-31 transfectants to identify the pathways they affect showed that many cancer-related genes are regulated by these miRNAs in PC3 cells. Identification and categorization of the molecular pathways regulated by tumor suppressive miRNAs could provide new information about the molecular mechanisms of PCa tumorigenesis.


Assuntos
Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Neoplasias da Próstata/genética , Idoso , Idoso de 80 Anos ou mais , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células , Simulação por Computador , Genes Supressores de Tumor , Genoma Humano , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias da Próstata/patologia , Reprodutibilidade dos Testes
15.
Biomedicines ; 10(3)2022 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-35327465

RESUMO

Based on our original RNA sequence-based microRNA (miRNA) signatures of head and neck squamous cell carcinoma (HNSCC), it was revealed that the expression levels of miR-1-3p, miR-206, miR-133a-3p, and miR-133b were significantly suppressed in cancer specimens. Seed sequences of miR-1-3p/miR-206 and miR-133a-3p/miR-133b are identical. Interestingly, miR-1-3p/miR-133a-3p and miR-206/miR-133b are clustered in the human genome. We hypothesized that the genes coordinately controlled by these miRNAs are closely involved in the malignant transformation of HNSCC. Our in silico analysis identified a total of 28 genes that had putative miR-1-3p/miR-133a-3p and miR-206/miR-133b binding sites. Moreover, their expression levels were upregulated in HNSCC tissues. Multivariate Cox regression analyses showed that expression of PFN2 and PSEN1 were independent prognostic factors for patients with HNSCC (p < 0.05). Notably, four miRNAs (i.e., miR-1-3p, miR-206, miR-133a-3p, and miR-133b) directly bound the 3'untranslated region of PFN2 and controlled expression of the gene in HNSCC cells. Overexpression of PFN2 was confirmed in clinical specimens, and its aberrant expression facilitated cancer cell migration and invasion abilities. Our miRNA-based strategy continues to uncover novel genes closely involved in the oncogenesis of HNSCC.

16.
J Exp Clin Cancer Res ; 41(1): 193, 2022 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-35655319

RESUMO

BACKGROUND: Understanding the intricate signaling network involved in triple-negative breast cancer (TNBC) represents a challenge for developing novel therapeutic approaches. Here, we aim to provide novel mechanistic insights on the function of the S100A8/A9-RAGE system in TNBC. METHODS: TNM plot analyzer, Kaplan-Meier plotter, Meta-analysis, GEPIA2 and GOBO publicly available datasets were used to evaluate the clinical significance of S100A8/A9 and expression levels of S100A8/A9, RAGE and Filamin family members in breast cancer (BC) subtypes. METABRIC database and Cox proportional hazard model defined the clinical impact of high RAGE expression in BC patients. Multiple bioinformatics programs identified the main enriched pathways within high RAGE expression BC cohorts. By lentiviral system, TNBC cells were engineered to overexpress RAGE. Western blotting, immunofluorescence, nucleus/cytoplasm fractionation, qRT-PCR, gene silencing and luciferase experiments were performed to identify signal transduction mediators engaged by RAGE upon stimulation with S100A8/A9 in TNBC cells. Proliferation, colony formation and transwell migration assays were carried out to evaluate the growth and migratory capacity of TNBC cells. Statistical analysis was performed by ANOVA and independent t-tests. RESULTS: We found a remarkable high expression of S100A8 and S100A9 in BC, particularly in HER2-positive and TNBC, with the latter associated to worst clinical outcomes. In addition, high RAGE expression correlated with a poor overall survival in BC. Next, we determined that the S100A8/A9-RAGE system triggers FAK activation by engaging a cytoskeleton mechanosensing complex in TNBC cells. Through bioinformatics analysis, we identified the Hippo pathway as the most enriched in BC patients expressing high RAGE levels. In accordance with these data, we demonstrated the involvement of S100A8/A9-RAGE-FAK signaling in the control of Hippo/YAP activities, and we established the crucial contribution of RAGE-FAK-YAP circuitry in the growth and migratory effects initiated by S100A8/A9 in TNBC cells. CONCLUSIONS: The present study provides novel mechanistic insights on RAGE actions in TNBC. Moreover, our findings suggest that RAGE-FAK-YAP transduction pathway could be exploited as a druggable system halting the aggressive TNBC subtype.


Assuntos
Neoplasias de Mama Triplo Negativas , Adesão Celular , Proteína-Tirosina Quinases de Adesão Focal , Via de Sinalização Hippo , Humanos , Transdução de Sinais , Neoplasias de Mama Triplo Negativas/genética
17.
Sci Rep ; 12(1): 18443, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-36323841

RESUMO

The microRNA (miR) miR-874, a potential tumour suppressor, causes cell death via target gene suppression in various cancer types. Mevalonate pathway inhibition also causes cell death in breast cancer. However, the relationship between the mevalonate pathway and miR-874-induced apoptosis or its association with the tumour suppressor p53 has not been elucidated. We identified phosphomevalonate kinase (PMVK), a key mevalonate pathway enzyme, and sterol regulatory element-binding factor 2 (SREBF2), the master cholesterol biosynthesis regulator, as direct miR­874 targets. Next-generation sequencing analysis revealed a significant miR-874-mediated downregulation of PMVK and SREBF2 gene expression and p53 pathway enrichment. Luciferase reporter assays showed that miR-874 directly regulated PMVK and SREBF2. miR-874-induced apoptosis was p53 dependent, and single-cell RNA sequencing analysis demonstrated that miR-874 transfection resulted in apoptosis and p53 pathway activation. Downregulation of PMVK expression also caused cell cycle arrest and p53 pathway activation, which was rescued by geranylgeranyl pyrophosphate (GGPP) supplementation. Analysis of The Cancer Genome Atlas (TCGA) database indicated a negative correlation between miR-874 and PMVK expression and between miR-874 and SREBF2 expression. These findings suggest that miR-874 suppresses the mevalonate pathway by targeting SREBF2 and PMVK, resulting in GGPP depletion, which activates the p53 pathway and promotes cycle arrest or apoptosis.


Assuntos
MicroRNAs , Proteína Supressora de Tumor p53 , Humanos , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Ácido Mevalônico/metabolismo , Linhagem Celular Tumoral , MicroRNAs/metabolismo , Apoptose/genética , Transformação Celular Neoplásica/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica
18.
Prostate ; 71(14): 1559-67, 2011 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-21360565

RESUMO

BACKGROUND: MiR-145 is down-regulated in various human cancers. We previously demonstrated that some actin-binding proteins were targeted by several microRNAs (miRNAs), including miR-145, in bladder and prostate cancer (CaP). The aim of this study is to determine a novel oncogenic gene targeted by miR-145 by focusing on actin-binding proteins in CaP. METHODS: We focused on the SWAP switching B-cell complex 70 kDa subunit (SWAP70), which is an F-actin binding protein involved in activating B-cell transformation. A luciferase reporter assay was used to identify the actual binding sites between miR-145 and SWAP70 mRNA. Cell viability was evaluated by cell proliferation, wound healing, and matrigel invasion assays in si-SWAP70 transfectants. A total of 75 clinical prostate specimens were subjected to immunohistochemistry of SWAP70. RESULTS: Molecular target searches of this miRNA and the luciferase reporter assay showed that SWAP70 was directly regulated by miR-145. Silencing of SWAP70 studies demonstrated significant inhibitions of cell migration and invasion in CaP cell lines. The SWAP70 positive-staining was significantly higher in percentage in the CaP than in benign prostate hyperplasia tissue. CONCLUSIONS: Down-regulation of miR-145 was a frequent event in CaP, and it may have a tumor suppressive function. SWAP70 may be a target of miR-145, and it might have a potential oncogenic function. The novel molecular networks though which miR-145 acts, may provide new insights into the underlying molecular mechanisms of CaP.


Assuntos
Proteínas de Ligação a DNA/genética , Fatores de Troca do Nucleotídeo Guanina/genética , MicroRNAs/genética , Proteínas Nucleares/genética , Neoplasias da Próstata/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células , Proteínas de Ligação a DNA/metabolismo , Regulação para Baixo/genética , Regulação Neoplásica da Expressão Gênica , Genes Supressores de Tumor , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Humanos , Luciferases/genética , Masculino , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Antígenos de Histocompatibilidade Menor , Proteínas Nucleares/metabolismo , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Interferência de RNA , RNA Interferente Pequeno/genética
19.
J Hum Genet ; 56(8): 595-601, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21753766

RESUMO

Our microRNA (miRNA) expression signatures of hypopharyngeal squamous cell carcinoma, maxillary sinus squamous cell carcinoma and esophageal squamous cell carcinoma revealed that miR-375 was significantly reduced in cancer tissues compared with normal epithelium. In this study, we focused on the functional significance of miR-375 in cancer cells and identification of miR-375-regulated novel cancer networks in head and neck squamous cell carcinoma (HNSCC). Restoration of miR-375 showed significant inhibition of cell proliferation and induction of cell apoptosis in SAS and FaDu cell lines, suggesting that miR-375 functions as a tumor suppressor. We adopted genome-wide gene expression analysis to search for miR-375-regulated molecular targets. Gene expression data and luciferase reporter assays revealed that AEG-1/MTDH was directly regulated by miR-375. Cancer cell proliferation was significantly inhibited in HNSCC cells transfected with si-AEG-1/MTDH. In addition, expression levels of AEG-1/MTDH were significantly upregulated in cancer tissues. Therefore, AEG-1/MTDH may function as an oncogene in HNSCC. The identification of novel tumor suppressive miRNA and its regulated cancer pathways could provide new insights into potential molecular mechanisms of HNSCC oncogenesis.


Assuntos
Carcinoma de Células Escamosas/genética , Moléculas de Adesão Celular/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias de Cabeça e Pescoço/genética , MicroRNAs/genética , Idoso , Idoso de 80 Anos ou mais , Sequência de Bases , Western Blotting , Moléculas de Adesão Celular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Perfilação da Expressão Gênica , Genes Supressores de Tumor , Humanos , Masculino , Proteínas de Membrana , Pessoa de Meia-Idade , Dados de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos , Proto-Oncogenes/genética , Interferência de RNA , Proteínas de Ligação a RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Carcinoma de Células Escamosas de Cabeça e Pescoço , Transfecção
20.
Cancers (Basel) ; 13(6)2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33801812

RESUMO

Small cell lung cancer (SCLC) is a highly aggressive cancer, and patients who become refractory to first-line treatment have a poor prognosis. The development of effective treatment regimens is urgently needed. In this study, we identified a gene expression signature of SCLC after treatment failure using SCLC clinical specimens (GEO accession number: GSE162102). A total of 1,136 genes were significantly upregulated in SCLC tissues. These upregulated genes were subjected to KEGG pathway analysis, and "cell cycle", "Fanconi anemia", "alcoholism", "systemic lupus erythematosus", "oocyte meiosis", "homologous recombination", "DNA replication", and "p53 signaling" were identified as the enriched pathways among the genes. We focused on the cell cycle pathway and investigated the clinical significance of four genes associated with this pathway: minichromosome maintenance (MCM) 2, MCM4, MCM6, and MCM7. The overexpression of these MCM genes was confirmed in SCLC clinical specimens. Knockdown assays using siRNAs targeting each of these four MCM genes showed significant attenuation of cancer cell proliferation. Moreover, siRNA-mediated knockdown of each MCM gene enhanced the cisplatin sensitivity of SCLC cells. Our SCLC molecular signature based on SCLC clinical specimens after treatment failure will provide useful information to identify novel molecular targets for this disease.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA