Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 121
Filtrar
1.
Development ; 149(8)2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-34622924

RESUMO

Hemimetabolous insects, such as the two-spotted cricket Gryllus bimaculatus, can recover lost tissues, in contrast to the limited regenerative abilities of human tissues. Following cricket leg amputation, the wound surface is covered by the wound epidermis, and plasmatocytes, which are insect macrophages, accumulate in the wound region. Here, we studied the function of Toll-related molecules identified by comparative RNA sequencing during leg regeneration. Of the 11 Toll genes in the Gryllus genome, expression of Toll2-1, Toll2-2 and Toll2-5 was upregulated during regeneration. RNA interference (RNAi) of Toll, Toll2-1, Toll2-2, Toll2-3 or Toll2-4 produced regeneration defects in more than 50% of crickets. RNAi of Toll2-2 led to a decrease in the ratio of S- and M-phase cells, reduced expression of JAK/STAT signalling genes, and reduced accumulation of plasmatocytes in the blastema. Depletion of plasmatocytes in crickets using clodronate also produced regeneration defects, as well as fewer proliferating cells in the regenerating legs. Plasmatocyte depletion also downregulated the expression of Toll and JAK/STAT signalling genes in the regenerating legs. These results suggest that Spz-Toll-related signalling in plasmatocytes promotes leg regeneration through blastema cell proliferation by regulating the Upd-JAK/STAT signalling pathway.


Assuntos
Gryllidae/metabolismo , Membro Posterior/fisiologia , Proteínas de Insetos/biossíntese , Regeneração , Transdução de Sinais , Receptores Toll-Like/biossíntese , Animais , Regulação da Expressão Gênica , Gryllidae/genética , Proteínas de Insetos/genética , Receptores Toll-Like/genética
2.
Dev Biol ; 485: 1-8, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35196518

RESUMO

Comparing the developmental mechanisms of segmentation among insects with different modes of embryogenesis provides insights on how the function of segmentation genes evolved. Functional analysis of eve by genetic mutants shows that the Drosophila pair-rule gene, even-skipped (eve), contributes to initial segmental patterning. However, eve orthologs tends to have diverse functions in other insects. To compare the evolutionary functional divergence of this gene, we evaluated eve function in a phylogenetically basal insect, the cricket Gryllus bimaculatus. To investigate the phenotypic effects of eve gene knock-out, we generated CRISPR/Cas9 system-mediated mutant strains of the cricket. CRISPR/Cas9 mutagenesis of multiple independent sites in the eve coding region revealed that eve null mutant embryos were defective in forming the gnathal, thoracic, and abdominal segments, consequently shortening the anterior-posterior axis. In contrast, the structures of the anterior and posterior ends (e.g., antenna, labrum, and cercus) formed normally. Hox gene expression in the gnathal, thoracic, and abdominal segments was detected in the mutant embryos. Overall, this study showed that Gryllus eve plays an important role in embryonic elongation and the formation of segmental boundaries in the gnathal to abdominal region of crickets. In the light of studies on other species, the eve function shown in Gryllus might be ancestral in insects.


Assuntos
Proteínas de Drosophila , Gryllidae , Sequência de Aminoácidos , Animais , Padronização Corporal/genética , Drosophila/genética , Proteínas de Drosophila/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Gryllidae/genética , Gryllidae/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Insetos/genética , Insetos/metabolismo , Interferência de RNA , Fatores de Transcrição/metabolismo
3.
Dev Growth Differ ; 65(6): 348-359, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37310211

RESUMO

The acquisition of wings was a key event in insect evolution. As hemimetabolous insects were the first group to acquire functional wings, establishing the mechanisms of wing formation in this group could provide useful insights into their evolution. In this study, we aimed to elucidate the expression and function of the gene scalloped (sd), which is involved in wing formation in Drosophila melanogaster, and in Gryllus bimaculatus mainly during postembryonic development. Expression analysis showed that sd is expressed in the tergal edge, legs, antennae, labrum, and cerci during embryogenesis and in the distal margin of the wing pads from at least the sixth instar in the mid to late stages. Because sd knockout caused early lethality, nymphal RNA interference experiments were performed. Malformations were observed in the wings, ovipositor, and antennae. By analyzing the effects on wing morphology, it was revealed that sd is mainly involved in the formation of the margin, possibly through the regulation of cell proliferation. In conclusion, sd might regulate the local growth of wing pads and influence wing margin morphology in Gryllus.


Assuntos
Desenvolvimento Embrionário , Gryllidae , Proteínas de Insetos , Fatores de Transcrição , Asas de Animais , Animais , Ciclo Celular , Proliferação de Células , Desenvolvimento Embrionário/genética , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Asas de Animais/embriologia , Asas de Animais/metabolismo , Gryllidae/embriologia , Gryllidae/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
4.
Proc Natl Acad Sci U S A ; 117(10): 5525-5531, 2020 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-32098850

RESUMO

Insects living in the temperate zone enter a physiological state of arrested or slowed development to overcome an adverse season, such as winter. Developmental arrest, called diapause, occurs at a species-specific developmental stage, and embryonic and pupal diapauses have been extensively studied in mostly holometabolous insects. Some other insects overwinter in the nymphal stage with slow growth for which the mechanism is poorly understood. Here, we show that this nymphal period of slow growth is regulated by temperature and photoperiod through separate pathways in the cricket Modicogryllus siamensis The former regulates the growth rate, at least in part, through the insulin / target of rapamycin (TOR) signaling pathway. Lower temperature down-regulates the expression of insulin-like peptide (Ms'Ilp) and Target of rapamycin (Ms'Tor) genes to slow down the growth rate without affecting the number of molts. The latter regulates the number of molts independent of temperature. Short days increase the number of molts through activation of the juvenile hormone (JH) pathway and down-regulation of myoglianin (Ms'myo), a member of the TGFß family, which induces adult metamorphosis. In contrast, long days regulate Ms'myo expression to increase during the fifth to sixth instar to initiate adult metamorphosis. When Ms'myo expression is suppressed, juvenile hormone O-methyl transferase (Ms'jhamt) was up-regulated and increased molts to prolong the nymphal period even under long-day conditions. The present findings suggested that the photoperiod regulated Ms'myo, and the JH signaling pathway and the temperature-controlled insulin/TOR pathway cooperated to regulate nymphal development for overwintering to achieve seasonal adaptation of the life cycle in M. siamensis.


Assuntos
Adaptação Fisiológica , Gryllidae/crescimento & desenvolvimento , Insulina/metabolismo , Hormônios Juvenis/metabolismo , Ninfa/crescimento & desenvolvimento , Fotoperíodo , Serina-Treonina Quinases TOR/metabolismo , Animais , Gryllidae/metabolismo , Ninfa/metabolismo , Estações do Ano , Transdução de Sinais , Temperatura , Fator de Crescimento Transformador beta/metabolismo
5.
Proc Natl Acad Sci U S A ; 113(20): 5634-9, 2016 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-27140602

RESUMO

Although butterflies undergo a dramatic morphological transformation from larva to adult via a pupal stage (holometamorphosis), crickets undergo a metamorphosis from nymph to adult without formation of a pupa (hemimetamorphosis). Despite these differences, both processes are regulated by common mechanisms that involve 20-hydroxyecdysone (20E) and juvenile hormone (JH). JH regulates many aspects of insect physiology, such as development, reproduction, diapause, and metamorphosis. Consequently, strict regulation of JH levels is crucial throughout an insect's life cycle. However, it remains unclear how JH synthesis is regulated. Here, we report that in the corpora allata of the cricket, Gryllus bimaculatus, Myoglianin (Gb'Myo), a homolog of Drosophila Myoglianin/vertebrate GDF8/11, is involved in the down-regulation of JH production by suppressing the expression of a gene encoding JH acid O-methyltransferase, Gb'jhamt In contrast, JH production is up-regulated by Decapentaplegic (Gb'Dpp) and Glass-bottom boat/60A (Gb'Gbb) signaling that occurs as part of the transcriptional activation of Gb'jhamt Gb'Myo defines the nature of each developmental transition by regulating JH titer and the interactions between JH and 20E. When Gb'myo expression is suppressed, the activation of Gb'jhamt expression and secretion of 20E induce molting, thereby leading to the next instar before the last nymphal instar. Conversely, high Gb'myo expression induces metamorphosis during the last nymphal instar through the cessation of JH synthesis. Gb'myo also regulates final insect size. Because Myo/GDF8/11 and Dpp/bone morphogenetic protein (BMP)2/4-Gbb/BMP5-8 are conserved in both invertebrates and vertebrates, the present findings provide common regulatory mechanisms for endocrine control of animal development.


Assuntos
Gryllidae/crescimento & desenvolvimento , Proteínas de Insetos/fisiologia , Hormônios Juvenis/biossíntese , Metamorfose Biológica , Transdução de Sinais/fisiologia , Fator de Crescimento Transformador beta/fisiologia , Sequência de Aminoácidos , Animais , Proteínas de Drosophila/fisiologia , Interferência de RNA , RNA Mensageiro/análise , Fator de Crescimento Transformador beta/química , Fator de Crescimento Transformador beta/genética
6.
Development ; 142(17): 2916-27, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26253405

RESUMO

Hemimetabolous insects such as the cricket Gryllus bimaculatus regenerate lost tissue parts using blastemal cells, a population of dedifferentiated proliferating cells. The expression of several factors that control epigenetic modification is upregulated in the blastema compared with differentiated tissue, suggesting that epigenetic changes in gene expression might control the differentiation status of blastema cells during regeneration. To clarify the molecular basis of epigenetic regulation during regeneration, we focused on the function of the Gryllus Enhancer of zeste [Gb'E(z)] and Ubiquitously transcribed tetratricopeptide repeat gene on the X chromosome (Gb'Utx) homologues, which regulate methylation and demethylation of histone H3 lysine 27 (H3K27), respectively. Methylated histone H3K27 in the regenerating leg was diminished by Gb'E(z)(RNAi) and was increased by Gb'Utx(RNAi). Regenerated Gb'E(z)(RNAi) cricket legs exhibited extra leg segment formation between the tibia and tarsus, and regenerated Gb'Utx(RNAi) cricket legs showed leg joint formation defects in the tarsus. In the Gb'E(z)(RNAi) regenerating leg, the Gb'dac expression domain expanded in the tarsus. By contrast, in the Gb'Utx(RNAi) regenerating leg, Gb'Egfr expression in the middle of the tarsus was diminished. These results suggest that regulation of the histone H3K27 methylation state is involved in the repatterning process during leg regeneration among cricket species via the epigenetic regulation of leg patterning gene expression.


Assuntos
Epigênese Genética , Extremidades/fisiologia , Gryllidae/genética , Gryllidae/fisiologia , Histonas/metabolismo , Lisina/metabolismo , Regeneração/genética , Sequência de Aminoácidos , Amputação Cirúrgica , Animais , Padronização Corporal/genética , Desdiferenciação Celular , Genes de Insetos , Proteínas de Insetos/química , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Articulações/fisiologia , Metilação , Modelos Biológicos , Dados de Sequência Molecular , Fenótipo , Homologia de Sequência de Aminoácidos , Tíbia/fisiologia
7.
Dev Growth Differ ; 60(6): 377-386, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30043459

RESUMO

The cricket, Gryllus bimaculatus, is a classic model of leg regeneration following amputation. We previously demonstrated that Gryllus decapentaplegic (Gb'dpp) is expressed during leg regeneration, although it remains unclear whether it is essential for this process. In this study, double-stranded RNA targeting the Smad mathers-against-dpp homolog, Gb'mad, was used to examine the role of bone morphogenetic protein (BMP) signaling in the leg regeneration process of Gryllus bimaculatus. RNA interference (RNAi)-mediated knockdown of Gb'mad led to a loss of tarsus regeneration at the most distal region of regenerating leg segments. Moreover, we confirmed that the phenotype obtained by knockdown of Dpp type I receptor, Thick veins (Gb'tkv), closely resembled that observed for Gb'mad RNAi crickets, thereby suggesting that the BMP signaling pathway is indispensable for the initial stages of tarsus formation. Interestingly, knockdown of Gb'mad and Gb'tkv resulted in significant elongation of regenerating tibia along the proximodistal axis compared with normal legs. Moreover, our findings indicate that during the regeneration of tibia, the BMP signaling pathway interacts with Dachsous/Fat (Gb'Ds/Gb'Ft) signaling and dachshund (Gb'dac) to re-establish positional information and regulate determination of leg size. Based on these observations, we discuss possible roles for Gb'mad in the distal patterning and intercalation processes during leg regeneration in Gryllus bimaculatus.


Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Gryllidae/metabolismo , Membro Posterior/fisiologia , Proteínas de Insetos/metabolismo , Regeneração/fisiologia , Transdução de Sinais/fisiologia , Animais , Proteínas Morfogenéticas Ósseas/genética , Gryllidae/genética , Proteínas de Insetos/genética
8.
Development ; 140(5): 959-64, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23344706

RESUMO

In the cricket Gryllus bimaculatus, missing distal parts of the amputated leg are regenerated from the blastema, a population of dedifferentiated proliferating cells that forms at the distal tip of the leg stump. To identify molecules involved in blastema formation, comparative transcriptome analysis was performed between regenerating and normal unamputated legs. Components of JAK/STAT signalling were upregulated more than twofold in regenerating legs. To verify their involvement, Gryllus homologues of the interleukin receptor Domeless (Gb'dome), the Janus kinase Hopscotch (Gb'hop) and the transcription factor STAT (Gb'Stat) were cloned, and RNAi was performed against these genes. Gb'dome(RNAi), Gb'hop(RNAi) and Gb'Stat(RNAi) crickets showed defects in leg regeneration. Blastema expression of Gb'cyclinE was decreased in the Gb'Stat(RNAi) cricket compared with that in the control. Hyperproliferation of blastema cells caused by Gb'fat(RNAi) or Gb'warts(RNAi) was suppressed by RNAi against Gb'Stat. The results suggest that JAK/STAT signalling regulates blastema cell proliferation during leg regeneration.


Assuntos
Gryllidae , Janus Quinases/fisiologia , Extremidade Inferior/fisiologia , Regeneração/genética , Fatores de Transcrição STAT/fisiologia , Animais , Proliferação de Células , Perfilação da Expressão Gênica , Gryllidae/genética , Gryllidae/metabolismo , Gryllidae/fisiologia , Janus Quinases/genética , Janus Quinases/metabolismo , RNA/análise , RNA/genética , RNA/metabolismo , Regeneração/fisiologia , Fatores de Transcrição STAT/genética , Fatores de Transcrição STAT/metabolismo , Análise de Sequência de RNA/métodos , Estatística como Assunto/métodos , Transcriptoma/genética , Transcriptoma/fisiologia , Estudos de Validação como Assunto
9.
J Biol Chem ; 289(7): 3991-4000, 2014 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-24403072

RESUMO

Opn5 is one of the recently identified opsin groups that is responsible for nonvisual photoreception in animals. We previously showed that a chicken homolog of mammalian Opn5 (Opn5m) is a Gi-coupled UV sensor having molecular properties typical of bistable pigments. Here we demonstrated that mammalian Opn5m evolved to be a more specialized photosensor by losing one of the characteristics of bistable pigments, direct binding of all-trans-retinal. We first confirmed that Opn5m proteins in zebrafish, Xenopus tropicalis, mouse, and human are also UV-sensitive pigments. Then we found that only mammalian Opn5m proteins lack the ability to directly bind all-trans-retinal. Mutational analysis showed that these characteristics were acquired by a single amino acid replacement at position 168. By comparing the expression patterns of Opn5m between mammals and chicken, we found that, like chicken Opn5m, mammalian Opn5m was localized in the ganglion cell layer and inner nuclear layer of the retina. However, the mouse and primate (common marmoset) opsins were distributed not in the posterior hypothalamus (including the region along the third ventricle) where chicken Opn5m is localized, but in the preoptic hypothalamus. Interestingly, RPE65, an essential enzyme for forming 11-cis-retinal in the visual cycle is expressed near the preoptic hypothalamus of the mouse and common marmoset brain but not near the region of the chicken brain where chicken Opn5m is expressed. Therefore, mammalian Opn5m may work exclusively as a short wavelength sensor in the brain as well as in the retina with the assistance of an 11-cis-retinal-supplying system.


Assuntos
Encéfalo/metabolismo , Evolução Molecular , Proteínas de Membrana/metabolismo , Mutação de Sentido Incorreto , Opsinas/metabolismo , Retina/metabolismo , Raios Ultravioleta , Substituição de Aminoácidos , Animais , Callithrix , Embrião de Galinha , Humanos , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos ICR , Opsinas/genética , Retinaldeído/genética , Retinaldeído/metabolismo , Xenopus , Peixe-Zebra , cis-trans-Isomerases/genética , cis-trans-Isomerases/metabolismo
10.
Planta ; 241(4): 953-65, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25534946

RESUMO

MAIN CONCLUSION: Light and ABA independently regulated anthocyanin biosynthesis via activation of FaMYB10 expression. FaMYB10 accelerated anthocyanin synthesis of pelargonidin 3-glucoside and cyanidin 3-glucoside during strawberry fruit ripening. Light is an integral factor in fruit ripening. Ripening in non-climacteric fruit is also effected by the plant hormone abscisic acid (ABA). However, how light and/or ABA regulate fruit ripening processes, such as strawberry color development remains elusive. Results of the present study showed light and ABA regulated strawberry fruit coloration via activation of FaMYB10 expression, an R2R3 MYB transcription factor. Light exposure increased FaMYB10 transcript levels, flavonoid pathway genes, and anthocyanin content. Exogenous ABA promoted FaMYB10 expression, and anthocyanin content, accompanied by increased ABA-responsive transcript levels and flavonoid pathway genes. ABA biosynthesis inhibitor treatment, and RNAi-mediated down-regulation of the ABA biosynthetic gene (9-cis epoxycarotenoid dioxygenase: FaNCED1), and ABA receptor (magnesium chelatase H subunit: FaCHLH/ABAR) showed inverse ABA effects. Furthermore, additive effects were observed in anthocyanin accumulation under combined light and ABA, indicating independent light and ABA signaling pathways. FaMYB10 down-regulation by Agrobacterium-mediated RNA interference (RNAi) in strawberry fruits showed decreased pelargonidin 3-glucoside and cyanidin 3-glucoside levels, accompanied by consistent flavonoid pathway gene expression levels. FaMYB10 over-expression showed opposite FaMYB10 RNAi phenotypes, particularly cyanidin 3-glucoside synthesis by FaMYB10, which was correlated with FaF3'H transcript levels. These data provided evidence that light and ABA promoted FaMYB10 expression, resulting in anthocyanin accumulation via acceleration of flavonoid pathway gene expression. Finally, our results suggested FaMYB10 serves a role as a signal transduction mediator from light and ABA perception to anthocyanin synthesis in strawberry fruit.


Assuntos
Antocianinas/metabolismo , Fragaria/fisiologia , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Fragaria/genética , Fragaria/efeitos da radiação , Frutas/genética , Frutas/efeitos da radiação , Luz , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
11.
Methods ; 69(1): 17-21, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-24874787

RESUMO

Hemimetabolous, or incompletely metamorphosing, insects are phylogenetically basal. These insects include many deleterious species. The cricket, Gryllus bimaculatus, is an emerging model for hemimetabolous insects, based on the success of RNA interference (RNAi)-based gene-functional analyses and transgenic technology. Taking advantage of genome-editing technologies in this species would greatly promote functional genomics studies. Genome editing using transcription activator-like effector nucleases (TALENs) has proven to be an effective method for site-specific genome manipulation in various species. TALENs are artificial nucleases that are capable of inducing DNA double-strand breaks into specified target sequences. Here, we describe a protocol for TALEN-based gene knockout in G. bimaculatus, including a mutant selection scheme via mutation detection assays, for generating homozygous knockout organisms.


Assuntos
Técnicas de Inativação de Genes , Gryllidae/genética , Animais , Desoxirribonucleases/química , Homozigoto , Mutagênese Sítio-Dirigida
12.
Development ; 138(17): 3823-33, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21828099

RESUMO

Delta/Notch signaling controls a wide spectrum of developmental processes, including body and leg segmentation in arthropods. The various functions of Delta/Notch signaling vary among species. For instance, in Cupiennius spiders, Delta/Notch signaling is essential for body and leg segmentation, whereas in Drosophila fruit flies it is involved in leg segmentation but not body segmentation. Therefore, to gain further insight into the functional evolution of Delta/Notch signaling in arthropod body and leg segmentation, we analyzed the function of the Delta (Gb'Delta) and Notch (Gb'Notch) genes in the hemimetabolous, intermediate-germ cricket Gryllus bimaculatus. We found that Gb'Delta and Gb'Notch were expressed in developing legs, and that RNAi silencing of Gb'Notch resulted in a marked reduction in leg length with a loss of joints. Our results suggest that the role of Notch signaling in leg segmentation is conserved in hemimetabolous insects. Furthermore, we found that Gb'Delta was expressed transiently in the posterior growth zone of the germband and in segmental stripes earlier than the appearance of wingless segmental stripes, whereas Gb'Notch was uniformly expressed in early germbands. RNAi knockdown of Gb'Delta or Gb'Notch expression resulted in malformation in body segments and a loss of posterior segments, the latter probably due to a defect in posterior growth. Therefore, in the cricket, Delta/Notch signaling might be required for proper morphogenesis of body segments and posterior elongation, but not for specification of segment boundaries.


Assuntos
Extremidades/embriologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Receptores Notch/metabolismo , Animais , Padronização Corporal/genética , Padronização Corporal/fisiologia , Proliferação de Células , Embrião não Mamífero/metabolismo , Desenvolvimento Embrionário/genética , Desenvolvimento Embrionário/fisiologia , Gryllidae , Imuno-Histoquímica , Hibridização In Situ , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana/genética , Interferência de RNA , Receptores Notch/genética , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
13.
Dev Growth Differ ; 56(3): 223-32, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24621004

RESUMO

This study evaluated the effectiveness of local administration of cationic liposome-delivered myostatin-targeting siRNA. Myostatin (Mst)-siRNA and scrambled (scr)-siRNA-lipoplexes were injected into the masseter muscles of wild type and dystrophin-deficient mdx mice, which model Duchenne muscular dystrophy. One week after injection, the masseter muscles were dissected for histometric analyses. To evaluate changes in masseter muscle activity, masseter electromyographic (EMG) measurements were performed. One week after local administration of Mst-siRNA-lipoplexes, masseter muscles and myofibrils were significantly larger compared to control masseter muscles treated with scr-siRNA-lipoplexes. Real-time polymerase chain reaction (PCR) analyses revealed significant upregulation of the myogenic regulatory factors MyoD and myogenin and significant downregulation of the adipogenic transcription factors peroxisome proliferator-activated receptor-γ (PPARγ) and CCAAT/enhancer binding protein-α (CEBPα) in masseter muscles treated with Mst-siRNA-lipoplexes. The duty times of masseter muscle activity exceeding 5% showed a slight tendency to increase in both wild type and mdx mice. Therefore, cationic liposome-mediated local administration of Mst-siRNA could increase muscular size and improve muscle activity. Since cationic liposomes delivered siRNA to muscles effectively and are safe and cost-effective, they may represent a therapeutic tool for use in treating muscular diseases.


Assuntos
Regulação da Expressão Gênica/efeitos dos fármacos , Marcação de Genes/métodos , Técnicas de Transferência de Genes , Músculo Masseter/crescimento & desenvolvimento , Miostatina/metabolismo , RNA Interferente Pequeno/metabolismo , Animais , Proteína alfa Estimuladora de Ligação a CCAAT/metabolismo , Primers do DNA/genética , Eletromiografia , Lipossomos , Músculo Masseter/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos mdx , PPAR gama/metabolismo , Interferência de RNA , RNA Interferente Pequeno/farmacologia , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
14.
Dev Growth Differ ; 55(7): 668-75, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24024588

RESUMO

Elucidating the mechanisms underlying eye development is essential for advancing the medical treatment of eye-related disorders. The primordium of the eye is an optic vesicle (OV), which has a dual potential for generation of the developing neural retina and retinal pigment epithelium. However, the factors that regulate the differentiation of the retinal primordium remain unclear. We have previously shown that overexpression of Lhx1 and Lhx5, members of the LIM-homeobox genes, induced the formation of a second neural retina from the presumptive pigmented retina of the OV. However, the precise timing of Lhx1 expression required for neural retina differentiation has not been clarified. Moreover, RNA interference of Lhx5 has not been previously reported. Here, using a modified electroporation method, we show that, Lhx1 expression in the forebrain around stage 8 is required for neural retina formation. In addition, we have succeeded in the knockdown of Lhx5 expression, resulting in conversion of the neural retina region to a pigment vesicle-like tissue, which indicates that Lhx5 is also required for neural retina differentiation, which correlates temporally with the activity of Lhx1. These results suggest that Lhx1 and Lhx5 in the forebrain regulate neural retina differentiation by suppressing the development of the retinal pigment epithelium, before the formation of the OV.


Assuntos
Proteínas Aviárias/metabolismo , Proteínas com Homeodomínio LIM/metabolismo , Prosencéfalo/metabolismo , Retina/metabolismo , Animais , Proteínas Aviárias/genética , Diferenciação Celular/genética , Embrião de Galinha , Regulação da Expressão Gênica no Desenvolvimento , Imuno-Histoquímica , Proteínas com Homeodomínio LIM/genética , Prosencéfalo/embriologia , Interferência de RNA , Retina/citologia , Retina/embriologia , Fatores de Transcrição SOXB1/metabolismo
15.
J Plant Res ; 126(6): 847-57, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23982948

RESUMO

Anthocyanins are widespread, essential secondary metabolites in higher plants during color development in certain flowers and fruits. In strawberries, anthocyanins are also key contributors to fruit antioxidant capacity and nutritional value. However, the effects of different light qualities on anthocyanin accumulation in strawberry (Fragaria x ananassa, cv. Sachinoka) fruits remain elusive. In the present study, we showed the most efficient increase in anthocyanin content occurred by blue light irradiation. Light sensing at the molecular level was investigated by isolation of two phototropin (FaPHOT1 and FaPHOT2), two cryptochrome (FaCRY1 and FaCRY2), and two phytochrome (FaPHYA and FaPHYB) homologs. Expression analysis revealed only FaPHOT2 transcripts markedly increased depending on fruit developmental stage, and a corresponding increase in anthocyanin content was detected. FaPHOT2 knockdown resulted in decreased anthocyanin content; however, overexpression increased anthocyanin content. These findings suggested blue light induced anthocyanin accumulation, and FaPHOT2 may play a role in sensing blue light, and mediating anthocyanin biosynthesis in strawberry fruits. This is the first report to find a relationship between visible light sensing, and color development in strawberry fruits.


Assuntos
Antocianinas/metabolismo , Fragaria/genética , Regulação da Expressão Gênica de Plantas , Fototropinas/metabolismo , Sequência de Aminoácidos , Antocianinas/análise , Antioxidantes/metabolismo , Regulação para Baixo , Flavonoides/metabolismo , Fragaria/crescimento & desenvolvimento , Fragaria/metabolismo , Fragaria/efeitos da radiação , Frutas , Técnicas de Silenciamento de Genes , Luz , Dados de Sequência Molecular , Fototropinas/genética , Filogenia , Pigmentação , Alinhamento de Sequência , Regulação para Cima
16.
PLoS One ; 18(5): e0285934, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37200362

RESUMO

Insect body colors and patterns change markedly during development in some species as they adapt to their surroundings. The contribution of melanin and sclerotin pigments, both of which are synthesized from dopamine, to cuticle tanning has been well studied. Nevertheless, little is known about how insects alter their body color patterns. To investigate this mechanism, the cricket Gryllus bimaculatus, whose body color patterns change during postembryonic development, was used as a model in this study. We focused on the ebony and tan genes, which encode enzymes that catalyze the synthesis and degradation, respectively, of the precursor of yellow sclerotin N-ß-alanyl dopamine (NBAD). Expression of the G. bimaculatus (Gb) ebony and tan transcripts tended to be elevated just after hatching and the molting period. We found that dynamic alterations in the combined expression levels of Gb'ebony and Gb'tan correlated with the body color transition from the nymphal stages to the adult. The body color of Gb'ebony knockout mutants generated by CRISPR/Cas9 systemically darkened. Meanwhile, Gb'tan knockout mutants displayed a yellow color in certain areas and stages. The phenotypes of the Gb'ebony and Gb'tan mutants probably result from an over-production of melanin and yellow sclerotin NBAD, respectively. Overall, stage-specific body color patterns in the postembryonic stages of the cricket are governed by the combinatorial expression of Gb'ebony and Gb'tan. Our findings provide insights into the mechanism by which insects evolve adaptive body coloration at each developmental stage.


Assuntos
Gryllidae , Melaninas , Animais , Melaninas/genética , Melaninas/metabolismo , Gryllidae/genética , Gryllidae/metabolismo , Ninfa/metabolismo , Dopamina/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo
17.
Lab Invest ; 92(8): 1100-14, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22584670

RESUMO

Skeletal muscle expressing Pro104Leu mutant caveolin 3 (CAV3(P104L)) in mouse becomes atrophied and serves as a model of autosomal dominant limb-girdle muscular dystrophy 1C. We previously found that caveolin 3-deficient muscles showed activated intramuscular transforming growth factor beta (TGF-ß) signals. However, the cellular mechanism by which loss of caveolin 3 leads to muscle atrophy is unknown. Recently, several small-molecule inhibitors of TGF-ß type I receptor (TßRI) kinase have been developed as molecular-targeting drugs for cancer therapy by suppressing intracellular TGF-ß1, -ß2, and -ß3 signaling. Here, we show that a TßRI kinase inhibitor, Ki26894, restores impaired myoblast differentiation in vitro caused by activin, myostatin, and TGF-ß1, as well as CAV3(P104L). Oral administration of Ki26894 increased muscle mass and strength in vivo in wild-type mice, and improved muscle atrophy and weakness in the CAV3(P104L) mice. The inhibitor restored the number of satellite cells, the resident stem cells of adult skeletal muscle, with suppression of the increased phosphorylation of Smad2, an effector, and the upregulation of p21 (also known as Cdkn1a), a target gene of the TGF-ß family members in muscle. These data indicate that both TGF-ß-dependent reduction in satellite cells and impairment of myoblast differentiation contribute to the cellular mechanism underlying caveolin 3-deficient muscle atrophy. TßRI kinase inhibitors could antagonize the activation of intramuscular anti-myogenic TGF-ß signals, thereby providing a novel therapeutic rationale for the alternative use of this type of anticancer drug in reversing muscle atrophy in various clinical settings.


Assuntos
Receptores de Ativinas Tipo I/antagonistas & inibidores , Caveolina 3/deficiência , Distrofia Muscular do Cíngulo dos Membros/tratamento farmacológico , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Receptores de Fatores de Crescimento Transformadores beta/antagonistas & inibidores , Fator de Crescimento Transformador beta1/metabolismo , Receptores de Ativinas Tipo I/farmacologia , Ativinas/metabolismo , Ativinas/farmacologia , Animais , Caveolina 3/genética , Caveolina 3/metabolismo , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Linhagem Celular , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Desenvolvimento Muscular/efeitos dos fármacos , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo , Distrofia Muscular do Cíngulo dos Membros/metabolismo , Distrofia Muscular do Cíngulo dos Membros/patologia , Mioblastos/patologia , Miostatina/metabolismo , Miostatina/farmacologia , Receptor do Fator de Crescimento Transformador beta Tipo I , Células Satélites de Músculo Esquelético/efeitos dos fármacos , Transdução de Sinais , Fator de Crescimento Transformador beta1/genética
18.
Anal Chem ; 84(14): 5885-91, 2012 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-22746100

RESUMO

Detection and localization of specific DNA or RNA sequences in cells and tissues are of great importance for biological research, diagnosis, and environmental monitoring. However, the most common procedure for in situ hybridization employs laborious immunostaining techniques. In the present study, we report proof-of-concept for a new RNA-enzyme conjugated probe for the detection of mRNA on tissue sections with a simple procedure. An RNA probe modified with a specific dipeptide substrate of transglutaminase was prepared. Alkaline phosphatase was then covalently and site-specifically combined to the dipeptide-labeled RNA using microbial transglutaminase. The new RNA probe labeled with alkaline phosphatase was validated by in situ hybridization (ISH) and proved to be a sensitive and sequence specific probe for mRNA detection in tissues. The new transglutaminase-mediated ISH (TransISH) strategy is free from antigen-antibody reaction, leads to one-step signal amplification after hybridization, and thus will be widely applicable for highly sensitive nucleic acid detection.


Assuntos
Hibridização In Situ/métodos , Transglutaminases/metabolismo , Animais , Camundongos , Protaminas/genética , Pyrococcus furiosus/enzimologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Uromodulina/genética
19.
Dev Growth Differ ; 54(2): 227-40, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22348272

RESUMO

In the cricket Gryllus bimaculatus, a hemimetabolous insect, the compound eyes begin to form in the embryo and increase 5-6 fold in size during the postembryonic development of the nymphal stage. Retinal stem cells in the anteroventral proliferation zone (AVPZ) of the nymphal eye proliferate to increase retinal progenitors, which then differentiate to form new ommatidia in the anterior region of the eye. However, mechanisms underlying this type of eye formation have not been well elucidated yet. Here, we found that the homologues of the retinal determination transcription factor genes of eyes absent (eya) and sine oculis (so) are expressed during the cricket embryonic eye formation. eya is also expressed intensely in the AVPZ of the nymphal eye. To explore their functions, we performed knockdown by RNA interference (RNAi). Knockdown of Gb'eya resulted in loss of the embryonic eye. In the nymphal eye, RNAi against Gb'eya or Gb'so impaired retinal morphology by apparently transforming cornea structures into head cuticle. These results imply that Gb'eya and Gb'so are essential for the differentiation of the retinal progenitor cells and maintaining retinal structures during eye development.


Assuntos
Olho/embriologia , Olho/metabolismo , Proteínas de Insetos/metabolismo , Fatores de Transcrição/metabolismo , Animais , Regulação da Expressão Gênica no Desenvolvimento/genética , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Gryllidae , Proteínas de Insetos/genética , Interferência de RNA/fisiologia , Fatores de Transcrição/genética
20.
Dev Dyn ; 240(5): 1028-41, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21360793

RESUMO

How limb size and shape is regulated is a long-standing question in developmental and regeneration biology. Recently, the protocadherin Dachsous-Fat (Ds-Ft) signaling pathway has been found to be essential for wing development of the fly and leg regeneration of the cricket. The Ds-Ft signaling pathway is linked to the Warts-Hippo (Wts-Hpo) signaling pathway, leading to cell proliferation. Several lines of evidence have suggested that the Wts-Hpo signaling pathway is involved in the control of organ size, and that this pathway is regulated by Ds-Ft and Merlin-Expanded, which are linked to morphogens such as decapentaplegic/bone morphogenic protein, Wingless/Wnt, and epidermal growth factor. Here we review recent progress in elucidating mechanisms controlling leg size and shape in insects and vertebrates, focusing on the Ds-Ft signaling pathway. We also introduce a working model, Ds-Ft steepness model, to explain how steepness of the Ds-Ft gradient controls leg size along the proximodistal axis.


Assuntos
Extremidades/anatomia & histologia , Extremidades/crescimento & desenvolvimento , Animais , Extremidades/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Insetos/anatomia & histologia , Insetos/embriologia , Insetos/metabolismo , Modelos Biológicos , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Vertebrados/anatomia & histologia , Vertebrados/embriologia , Vertebrados/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA