Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Brain ; 144(5): 1576-1589, 2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-33769452

RESUMO

Seizures can emerge from multiple or large foci in temporal lobe epilepsy, complicating focally targeted strategies such as surgical resection or the modulation of the activity of specific hippocampal neuronal populations through genetic or optogenetic techniques. Here, we evaluate a strategy in which optogenetic activation of medial septal GABAergic neurons, which provide extensive projections throughout the hippocampus, is used to control seizures. We utilized the chronic intrahippocampal kainate mouse model of temporal lobe epilepsy, which results in spontaneous seizures and as is often the case in human patients, presents with hippocampal sclerosis. Medial septal GABAergic neuron populations were immunohistochemically labelled and were not reduced in epileptic conditions. Genetic labelling with mRuby of medial septal GABAergic neuron synaptic puncta and imaging across the rostral to caudal extent of the hippocampus, also indicated an unchanged number of putative synapses in epilepsy. Furthermore, optogenetic stimulation of medial septal GABAergic neurons consistently modulated oscillations across multiple hippocampal locations in control and epileptic conditions. Finally, wireless optogenetic stimulation of medial septal GABAergic neurons, upon electrographic detection of spontaneous hippocampal seizures, resulted in reduced seizure durations. We propose medial septal GABAergic neurons as a novel target for optogenetic control of seizures in temporal lobe epilepsy.


Assuntos
Neurônios GABAérgicos/fisiologia , Hipocampo/fisiopatologia , Optogenética , Convulsões/fisiopatologia , Núcleos Septais/fisiopatologia , Animais , Epilepsia do Lobo Temporal/fisiopatologia , Feminino , Masculino , Camundongos
2.
J Physiol ; 595(4): 1239-1251, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-27767209

RESUMO

KEY POINTS: We establish experimental preparations for optogenetic investigation of glutamatergic input to the inferior olive. Neurones in the principal olivary nucleus receive monosynaptic extra-somatic glutamatergic input from the neocortex. Glutamatergic inputs to neurones in the inferior olive generate bidirectional postsynaptic potentials (PSPs), with a fast excitatory component followed by a slower inhibitory component. Small conductance calcium-activated potassium (SK) channels are required for the slow inhibitory component of glutamatergic PSPs and oppose temporal summation of inputs at intervals ≤ 20 ms. Active integration of synaptic input within the inferior olive may play a central role in control of olivo-cerebellar climbing fibre signals. ABSTRACT: The inferior olive plays a critical role in motor coordination and learning by integrating diverse afferent signals to generate climbing fibre inputs to the cerebellar cortex. While it is well established that climbing fibre signals are important for motor coordination, the mechanisms by which neurones in the inferior olive integrate synaptic inputs and the roles of particular ion channels are unclear. Here, we test the hypothesis that neurones in the inferior olive actively integrate glutamatergic synaptic inputs. We demonstrate that optogenetically activated long-range synaptic inputs to the inferior olive, including projections from the motor cortex, generate rapid excitatory potentials followed by slower inhibitory potentials. Synaptic projections from the motor cortex preferentially target the principal olivary nucleus. We show that inhibitory and excitatory components of the bidirectional synaptic potentials are dependent upon AMPA (GluA) receptors, are GABAA independent, and originate from the same presynaptic axons. Consistent with models that predict active integration of synaptic inputs by inferior olive neurones, we find that the inhibitory component is reduced by blocking large conductance calcium-activated potassium channels with iberiotoxin, and is abolished by blocking small conductance calcium-activated potassium channels with apamin. Summation of excitatory components of synaptic responses to inputs at intervals ≤ 20 ms is increased by apamin, suggesting a role for the inhibitory component of glutamatergic responses in temporal integration. Our results indicate that neurones in the inferior olive implement novel rules for synaptic integration and suggest new principles for the contribution of inferior olive neurones to coordinated motor behaviours.


Assuntos
Núcleo Olivar/metabolismo , Receptores de AMPA/metabolismo , Potenciais Sinápticos , Animais , Apamina/farmacologia , Ácido Glutâmico/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Córtex Motor/citologia , Córtex Motor/metabolismo , Córtex Motor/fisiologia , Neurônios/metabolismo , Neurônios/fisiologia , Núcleo Olivar/citologia , Núcleo Olivar/fisiologia , Peptídeos/farmacologia , Bloqueadores dos Canais de Potássio/farmacologia , Canais de Potássio Ativados por Cálcio de Condutância Baixa/metabolismo , Sinapses/metabolismo , Sinapses/fisiologia
3.
J Physiol ; 594(22): 6547-6557, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27870120

RESUMO

Neurons in the medial entorhinal cortex encode location through spatial firing fields that have a grid-like organisation. The challenge of identifying mechanisms for grid firing has been addressed through experimental and theoretical investigations of medial entorhinal circuits. Here, we discuss evidence for continuous attractor network models that account for grid firing by synaptic interactions between excitatory and inhibitory cells. These models assume that grid-like firing patterns are the result of computation of location from velocity inputs, with additional spatial input required to oppose drift in the attractor state. We focus on properties of continuous attractor networks that are revealed by explicitly considering excitatory and inhibitory neurons, their connectivity and their membrane potential dynamics. Models at this level of detail can account for theta-nested gamma oscillations as well as grid firing, predict spatial firing of interneurons as well as excitatory cells, show how gamma oscillations can be modulated independently from spatial computations, reveal critical roles for neuronal noise, and demonstrate that only a subset of excitatory cells in a network need have grid-like firing fields. Evaluating experimental data against predictions from detailed network models will be important for establishing the mechanisms mediating grid firing.


Assuntos
Potenciais de Ação/fisiologia , Células de Grade/fisiologia , Rede Nervosa/fisiologia , Animais , Córtex Entorrinal/fisiologia , Interneurônios/fisiologia , Modelos Neurológicos , Transmissão Sináptica/fisiologia
4.
PLoS Comput Biol ; 11(1): e1004032, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25615592

RESUMO

Neural circuits in the medial entorhinal cortex (MEC) encode an animal's position and orientation in space. Within the MEC spatial representations, including grid and directional firing fields, have a laminar and dorsoventral organization that corresponds to a similar topography of neuronal connectivity and cellular properties. Yet, in part due to the challenges of integrating anatomical data at the resolution of cortical layers and borders, we know little about the molecular components underlying this organization. To address this we develop a new computational pipeline for high-throughput analysis and comparison of in situ hybridization (ISH) images at laminar resolution. We apply this pipeline to ISH data for over 16,000 genes in the Allen Brain Atlas and validate our analysis with RNA sequencing of MEC tissue from adult mice. We find that differential gene expression delineates the borders of the MEC with neighboring brain structures and reveals its laminar and dorsoventral organization. We propose a new molecular basis for distinguishing the deep layers of the MEC and show that their similarity to corresponding layers of neocortex is greater than that of superficial layers. Our analysis identifies ion channel-, cell adhesion- and synapse-related genes as candidates for functional differentiation of MEC layers and for encoding of spatial information at different scales along the dorsoventral axis of the MEC. We also reveal laminar organization of genes related to disease pathology and suggest that a high metabolic demand predisposes layer II to neurodegenerative pathology. In principle, our computational pipeline can be applied to high-throughput analysis of many forms of neuroanatomical data. Our results support the hypothesis that differences in gene expression contribute to functional specialization of superficial layers of the MEC and dorsoventral organization of the scale of spatial representations.


Assuntos
Córtex Entorrinal/química , Córtex Entorrinal/crescimento & desenvolvimento , Perfilação da Expressão Gênica/métodos , Processamento de Imagem Assistida por Computador/métodos , Animais , Córtex Entorrinal/anatomia & histologia , Córtex Entorrinal/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Imagem Molecular/métodos , Especificidade de Órgãos/fisiologia
5.
J Neurosci ; 34(50): 16739-43, 2014 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-25505326

RESUMO

The medial septum (MS) is required for theta rhythmic oscillations and grid cell firing in the medial entorhinal cortex (MEC). While GABAergic, glutamatergic, and cholinergic neurons project from the MS to the MEC, their synaptic targets are unknown. To investigate whether MS neurons innervate specific layers and cell types in the MEC, we expressed channelrhodopsin-2 in mouse MS neurons and used patch-clamp recording in brain slices to determine the response to light activation of identified cells in the MEC. Following activation of MS axons, we observed fast monosynaptic GABAergic IPSPs in the majority (>60%) of fast-spiking (FS) and low-threshold-spiking (LTS) interneurons in all layers of the MEC, but in only 1.5% of nonstellate principal cells (NSPCs) and in no stellate cells. We also observed fast glutamatergic responses to MS activation in a minority (<5%) of NSPCs, FS, and LTS interneurons. During stimulation of MS inputs at theta frequency (10 Hz), the amplitude of GABAergic IPSPs was maintained, and spike output from LTS and FS interneurons was entrained at low (25-60 Hz) and high (60-180 Hz) gamma frequencies, respectively. By demonstrating cell type-specific targeting of the GABAergic projection from the MS to the MEC, our results support the idea that the MS controls theta frequency activity in the MEC through coordination of inhibitory circuits.


Assuntos
Córtex Entorrinal/fisiologia , Neurônios GABAérgicos/fisiologia , Interneurônios/fisiologia , Inibição Neural/fisiologia , Núcleos Septais/fisiologia , Animais , Córtex Entorrinal/citologia , Masculino , Potenciais da Membrana/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Núcleos Septais/citologia
6.
J Neurosci ; 33(34): 13583-99, 2013 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-23966682

RESUMO

In many cortical neurons, HCN1 channels are the major contributors to Ih, the hyperpolarization-activated current, which regulates the intrinsic properties of neurons and shapes their integration of synaptic inputs, paces rhythmic activity, and regulates synaptic plasticity. Here, we examine the physiological role of Ih in deep layer pyramidal neurons in mouse prefrontal cortex (PFC), focusing on persistent activity, a form of sustained firing thought to be important for the behavioral function of the PFC during working memory tasks. We find that HCN1 contributes to the intrinsic persistent firing that is induced by a brief depolarizing current stimulus in the presence of muscarinic agonists. Deletion of HCN1 or acute pharmacological blockade of Ih decreases the fraction of neurons capable of generating persistent firing. The reduction in persistent firing is caused by the membrane hyperpolarization that results from the deletion of HCN1 or Ih blockade, rather than a specific role of the hyperpolarization-activated current in generating persistent activity. In vivo recordings show that deletion of HCN1 has no effect on up states, periods of enhanced synaptic network activity. Parallel behavioral studies demonstrate that HCN1 contributes to the PFC-dependent resolution of proactive interference during working memory. These results thus provide genetic evidence demonstrating the importance of HCN1 to intrinsic persistent firing and the behavioral output of the PFC. The causal role of intrinsic persistent firing in PFC-mediated behavior remains an open question.


Assuntos
Potenciais de Ação/genética , Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , Função Executiva/fisiologia , Memória/fisiologia , Neurônios/fisiologia , Canais de Potássio/metabolismo , Córtex Pré-Frontal/citologia , Potenciais de Ação/efeitos dos fármacos , Animais , Comportamento de Escolha/efeitos dos fármacos , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , Proteínas de Fluorescência Verde/genética , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Técnicas In Vitro , Aprendizagem em Labirinto/efeitos dos fármacos , Memória/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/efeitos dos fármacos , Neurotransmissores/farmacologia , Técnicas de Patch-Clamp , Canais de Potássio/genética , Aprendizagem Seriada/efeitos dos fármacos , Aprendizagem Seriada/fisiologia , Potenciais Sinápticos/efeitos dos fármacos , Potenciais Sinápticos/genética
7.
J Neurophysiol ; 112(11): 2756-78, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25122704

RESUMO

Hypertension is associated with pathologically increased sympathetic drive to the vasculature. This has been attributed to increased excitatory drive to sympathetic preganglionic neurons (SPN) from brainstem cardiovascular control centers. However, there is also evidence supporting increased intrinsic excitability of SPN. To test this hypothesis, we made whole cell recordings of muscle vasoconstrictor-like (MVClike) SPN in the working-heart brainstem preparation of spontaneously hypertensive (SH) and normotensive Wistar-Kyoto (WKY) rats. The MVClike SPN have a higher spontaneous firing frequency in the SH rat (3.85 ± 0.4 vs. 2.44 ± 0.4 Hz in WKY; P = 0.011) with greater respiratory modulation of their activity. The action potentials of SH SPN had smaller, shorter afterhyperpolarizations (AHPs) and showed diminished transient rectification indicating suppression of an A-type potassium conductance (IA). We developed mathematical models of the SPN to establish if changes in their intrinsic properties in SH rats could account for their altered firing. Reduction of the maximal conductance density of IA by 15-30% changed the excitability and output of the model from the WKY to a SH profile, with increased firing frequency, amplified respiratory modulation, and smaller AHPs. This change in output is predominantly a consequence of altered synaptic integration. Consistent with these in silico predictions, we found that intrathecal 4-aminopyridine (4-AP) increased sympathetic nerve activity, elevated perfusion pressure, and augmented Traube-Hering waves. Our findings indicate that IA acts as a powerful filter on incoming synaptic drive to SPN and that its diminution in the SH rat is potentially sufficient to account for the increased sympathetic output underlying hypertension.


Assuntos
Potenciais de Ação , Hipertensão/fisiopatologia , Neurônios/fisiologia , Músculos Respiratórios/inervação , Sistema Nervoso Simpático/fisiologia , Vasoconstrição , Animais , Tronco Encefálico/citologia , Tronco Encefálico/fisiologia , Coração/inervação , Coração/fisiologia , Masculino , Modelos Neurológicos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Potássio/metabolismo , Bloqueadores dos Canais de Potássio/farmacologia , Canais de Potássio Corretores do Fluxo de Internalização/antagonistas & inibidores , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Ratos , Ratos Endogâmicos SHR , Ratos Wistar , Músculos Respiratórios/irrigação sanguínea , Músculos Respiratórios/fisiologia , Corno Lateral da Medula Espinal/citologia , Corno Lateral da Medula Espinal/fisiologia , Sistema Nervoso Simpático/citologia
8.
Elife ; 122024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38546203

RESUMO

Grid firing fields have been proposed as a neural substrate for spatial localisation in general or for path integration in particular. To distinguish these possibilities, we investigate firing of grid and non-grid cells in the mouse medial entorhinal cortex during a location memory task. We find that grid firing can either be anchored to the task environment, or can encode distance travelled independently of the task reference frame. Anchoring varied between and within sessions, while spatial firing of non-grid cells was either coherent with the grid population, or was stably anchored to the task environment. We took advantage of the variability in task-anchoring to evaluate whether and when encoding of location by grid cells might contribute to behaviour. We find that when reward location is indicated by a visual cue, performance is similar regardless of whether grid cells are task-anchored or not, arguing against a role for grid representations when location cues are available. By contrast, in the absence of the visual cue, performance was enhanced when grid cells were anchored to the task environment. Our results suggest that anchoring of grid cells to task reference frames selectively enhances performance when path integration is required.


Assuntos
Sinais (Psicologia) , Córtex Entorrinal , Camundongos , Animais , Potenciais de Ação , Percepção Espacial , Modelos Neurológicos
9.
J Physiol ; 591(22): 5691-709, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-24000178

RESUMO

Neural computations rely on ion channels that modify neuronal responses to synaptic inputs. While single cell recordings suggest diverse and neurone type-specific computational functions for HCN1 channels, their behavioural roles in any single neurone type are not clear. Using a battery of behavioural assays, including analysis of motor learning in vestibulo-ocular reflex and rotarod tests, we find that deletion of HCN1 channels from cerebellar Purkinje cells selectively impairs late stages of motor learning. Because deletion of HCN1 modifies only a subset of behaviours involving Purkinje cells, we asked whether the channel also has functional specificity at a cellular level. We find that HCN1 channels in cerebellar Purkinje cells reduce the duration of inhibitory synaptic responses but, in the absence of membrane hyperpolarization, do not affect responses to excitatory inputs. Our results indicate that manipulation of subthreshold computation in a single neurone type causes specific modifications to behaviour.


Assuntos
Cerebelo/fisiologia , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Aprendizagem/fisiologia , Canais de Potássio/metabolismo , Células de Purkinje/fisiologia , Sinapses/metabolismo , Potenciais de Ação/fisiologia , Animais , Cerebelo/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Atividade Motora/fisiologia , Células de Purkinje/metabolismo , Reflexo Vestíbulo-Ocular/fisiologia
10.
Curr Biol ; 33(21): R1160-R1162, 2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37935132

RESUMO

Memory consolidation involves interactions between the hippocampus and other cortical areas. A new study identifies neurons in the medial entorhinal cortex that over learning increase their coordination with hippocampal replay events, suggesting a route for consolidation of spatial memories.


Assuntos
Córtex Entorrinal , Consolidação da Memória , Córtex Entorrinal/fisiologia , Hipocampo/fisiologia , Memória Espacial , Neurônios/fisiologia
11.
Neuron ; 111(4): 508-525.e7, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36495869

RESUMO

In fragile X syndrome (FX), the leading monogenic cause of autism, excessive neuronal protein synthesis is a core pathophysiology; however, an overall increase in protein expression is not observed. Here, we tested whether excessive protein synthesis drives a compensatory rise in protein degradation that is protective for FX mouse model (Fmr1-/y) neurons. Surprisingly, although we find a significant increase in protein degradation through ubiquitin proteasome system (UPS), this contributes to pathological changes. Normalizing proteasome activity with bortezomib corrects excessive hippocampal protein synthesis and hyperactivation of neurons in the inferior colliculus (IC) in response to auditory stimulation. Moreover, systemic administration of bortezomib significantly reduces the incidence and severity of audiogenic seizures (AGS) in the Fmr1-/y mouse, as does genetic reduction of proteasome, specifically in the IC. Together, these results identify excessive activation of the UPS pathway in Fmr1-/y neurons as a contributor to multiple phenotypes that can be targeted for therapeutic intervention.


Assuntos
Síndrome do Cromossomo X Frágil , Camundongos , Animais , Complexo de Endopeptidases do Proteassoma/metabolismo , Complexo de Endopeptidases do Proteassoma/uso terapêutico , Proteostase , Bortezomib/metabolismo , Bortezomib/uso terapêutico , Proteína do X Frágil da Deficiência Intelectual/genética , Modelos Animais de Doenças , Camundongos Knockout
12.
J Neurosci ; 31(45): 16142-56, 2011 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-22072667

RESUMO

Long-term synaptic plasticity requires postsynaptic influx of Ca²âº and is accompanied by changes in dendritic spine size. Unless Ca²âº influx mechanisms and spine volume scale proportionally, changes in spine size will modify spine Ca²âº concentrations during subsequent synaptic activation. We show that the relationship between Ca²âº influx and spine volume is a fundamental determinant of synaptic stability. If Ca²âº influx is undercompensated for increases in spine size, then strong synapses are stabilized and synaptic strength distributions have a single peak. In contrast, overcompensation of Ca²âº influx leads to binary, persistent synaptic strengths with double-peaked distributions. Biophysical simulations predict that CA1 pyramidal neuron spines are undercompensating. This unifies experimental findings that weak synapses are more plastic than strong synapses, that synaptic strengths are unimodally distributed, and that potentiation saturates for a given stimulus strength. We conclude that structural plasticity provides a simple, local, and general mechanism that allows dendritic spines to foster both rapid memory formation and persistent memory storage.


Assuntos
Espinhas Dendríticas/fisiologia , Modelos Neurológicos , Plasticidade Neuronal/fisiologia , Neurônios/citologia , Dinâmica não Linear , Sinapses/fisiologia , Animais , Biofísica , Cálcio/metabolismo , Simulação por Computador , Estimulação Elétrica , Hipocampo/citologia , Potenciação de Longa Duração , Neurônios/fisiologia , Transmissão Sináptica/fisiologia
13.
Adv Sci (Weinh) ; 9(31): e2203018, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36068166

RESUMO

Establishing the biological basis of cognition and its disorders will require high precision spatiotemporal measurements of neural activity. Recently developed genetically encoded voltage indicators (GEVIs) report both spiking and subthreshold activity of identified neurons. However, maximally capitalizing on the potential of GEVIs will require imaging at millisecond time scales, which remains challenging with standard camera systems. Here, application of single photon avalanche diode (SPAD) sensors is reported to image neural activity at kilohertz frame rates. SPADs are electronic devices that when activated by a single photon cause an avalanche of electrons and a large electric current. An array of SPAD sensors is used to image individual neurons expressing the GEVI Voltron-JF525-HTL. It is shown that subthreshold and spiking activity can be resolved with shot noise limited signals at frame rates of up to 10 kHz. SPAD imaging is able to reveal millisecond scale synchronization of neural activity in an ex vivo seizure model. SPAD sensors may have widespread applications for investigation of millisecond timescale neural dynamics.


Assuntos
Neurônios , Fótons , Neurônios/fisiologia , Diagnóstico por Imagem , Eletrônica
14.
Elife ; 112022 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-36562467

RESUMO

Standard models for spatial and episodic memory suggest that the lateral entorhinal cortex (LEC) and medial entorhinal cortex (MEC) send parallel independent inputs to the hippocampus, each carrying different types of information. Here, we evaluate the possibility that information is integrated between divisions of the entorhinal cortex prior to reaching the hippocampus. We demonstrate that, in mice, fan cells in layer 2 (L2) of LEC that receive neocortical inputs, and that project to the hippocampal dentate gyrus, also send axon collaterals to layer 1 (L1) of the MEC. Activation of inputs from fan cells evokes monosynaptic glutamatergic excitation of stellate and pyramidal cells in L2 of the MEC, typically followed by inhibition that contains fast and slow components mediated by GABAA and GABAB receptors, respectively. Inputs from fan cells also directly activate interneurons in L1 and L2 of MEC, with synaptic connections from L1 interneurons accounting for slow feedforward inhibition of L2 principal cell populations. The relative strength of excitation and inhibition following fan cell activation differs substantially between neurons and is largely independent of anatomical location. Our results demonstrate that the LEC, in addition to directly influencing the hippocampus, can activate or inhibit major hippocampal inputs arising from the MEC. Thus, local circuits in the superficial MEC may combine spatial information with sensory and higher order signals from the LEC, providing a substrate for integration of 'what' and 'where' components of episodic memories.


Assuntos
Córtex Entorrinal , Hipocampo , Camundongos , Animais , Córtex Entorrinal/fisiologia , Hipocampo/fisiologia , Neurônios/fisiologia , Giro Para-Hipocampal , Ácido gama-Aminobutírico
15.
Curr Biol ; 32(20): 4451-4464.e7, 2022 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-36099915

RESUMO

Neurons in the retrohippocampal cortices play crucial roles in spatial memory. Many retrohippocampal neurons have firing fields that are selectively active at specific locations, with memory for rewarded locations associated with reorganization of these firing fields. Whether this is the sole strategy for representing spatial memories is unclear. Here, we demonstrate that during a spatial memory task retrohippocampal neurons encode location through ramping activity that extends across segments of a linear track approaching and following a reward, with the rewarded location represented by offsets or switches in the slope of the ramping activity. Ramping representations could be maintained independently of trial outcome and cues marking the reward location, indicating that they result from recall of the track structure. When recorded in an open arena, neurons that generated ramping activity during the spatial memory task were more numerous than grid or border cells, with a majority showing spatial firing that did not meet criteria for classification as grid or border representations. Encoding of rewarded locations through offsets and switches in the slope of ramping activity also emerged in recurrent neural network models trained to solve a similar spatial memory task. Impaired performance of model networks following disruption of outputs from ramping neurons is consistent with this coding strategy supporting navigation to recalled locations of behavioral significance. Our results suggest that encoding of learned spaces by retrohippocampal networks employs both discrete firing fields and continuous ramping representations. We hypothesize that retrohippocampal ramping activity mediates readout of learned models for goal-directed navigation.


Assuntos
Hipocampo , Neurônios , Hipocampo/fisiologia , Neurônios/fisiologia , Córtex Cerebral , Memória Espacial , Recompensa
16.
18.
J Physiol ; 589(Pt 12): 2993-3008, 2011 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-21502290

RESUMO

The membrane potential dynamics of stellate neurons in layer II of the medial entorhinal cortex are important for neural encoding of location. Previous studies suggest that these neurons generate intrinsic theta-frequency membrane potential oscillations, with a period that depends on neuronal location on the dorsal­ventral axis of themedial entorhinal cortex, and which in behaving animals could support generation of grid-like spatial firing fields. To address the nature and organization of this theta-like activity, we adopt the Lombmethod of least-squares spectral analysis. We demonstrate that peaks in frequency spectra that differ significantly from Gaussian noise do not necessarily imply the existence of a periodic oscillator, but can instead arise from filtered stochastic noise or a stochastic random walk. We show that theta-like membrane potential activity recorded fromstellate neurons in mature brain slices is consistentwith stochastic mechanisms, but not with generation by a periodic oscillator. The dorsal­ventral organization of intrinsic theta-likemembrane potential activity, and themodification of this activity during block of HCN channels, both reflect altered frequency distributions of stochastic spectral peaks, rather than tuning of a periodic oscillator. Our results demonstrate the importance of distinguishing periodic oscillations from stochastic processes.We suggest that dorsal­ventral tuning of theta-like membrane potential activity is due to differences in stochastic current fluctuations resulting from organization of ion channels that also control synaptic integration.


Assuntos
Relógios Biológicos/fisiologia , Córtex Entorrinal/fisiologia , Modelos Neurológicos , Rede Nervosa/fisiologia , Neurônios/fisiologia , Gânglio Estrelado/fisiologia , Animais , Células Cultivadas , Simulação por Computador , Camundongos , Processos Estocásticos
19.
PLoS Comput Biol ; 6(8)2010 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-20711353

RESUMO

Neuronal activity is mediated through changes in the probability of stochastic transitions between open and closed states of ion channels. While differences in morphology define neuronal cell types and may underlie neurological disorders, very little is known about influences of stochastic ion channel gating in neurons with complex morphology. We introduce and validate new computational tools that enable efficient generation and simulation of models containing stochastic ion channels distributed across dendritic and axonal membranes. Comparison of five morphologically distinct neuronal cell types reveals that when all simulated neurons contain identical densities of stochastic ion channels, the amplitude of stochastic membrane potential fluctuations differs between cell types and depends on sub-cellular location. For typical neurons, the amplitude of membrane potential fluctuations depends on channel kinetics as well as open probability. Using a detailed model of a hippocampal CA1 pyramidal neuron, we show that when intrinsic ion channels gate stochastically, the probability of initiation of dendritic or somatic spikes by dendritic synaptic input varies continuously between zero and one, whereas when ion channels gate deterministically, the probability is either zero or one. At physiological firing rates, stochastic gating of dendritic ion channels almost completely accounts for probabilistic somatic and dendritic spikes generated by the fully stochastic model. These results suggest that the consequences of stochastic ion channel gating differ globally between neuronal cell-types and locally between neuronal compartments. Whereas dendritic neurons are often assumed to behave deterministically, our simulations suggest that a direct consequence of stochastic gating of intrinsic ion channels is that spike output may instead be a probabilistic function of patterns of synaptic input to dendrites.


Assuntos
Dendritos/fisiologia , Ativação do Canal Iônico/fisiologia , Modelos Neurológicos , Processos Estocásticos , Sinapses/fisiologia , Potenciais de Ação/fisiologia , Axônios/fisiologia , Região CA1 Hipocampal/fisiologia , Humanos , Canais Iônicos/fisiologia , Potenciais da Membrana/fisiologia
20.
Trends Neurosci ; 44(11): 876-887, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34593254

RESUMO

The deep layers of the entorhinal cortex are important for spatial cognition, as well as memory storage, consolidation and retrieval. A long-standing hypothesis is that deep-layer neurons relay spatial and memory-related signals between the hippocampus and telencephalon. We review the implications of recent circuit-level analyses that suggest more complex roles. The organization of deep entorhinal layers is consistent with multi-stage processing by specialized cell populations; in this framework, hippocampal, neocortical, and subcortical inputs are integrated to generate representations for use by targets in the telencephalon and for feedback to the superficial entorhinal cortex and hippocampus. Addressing individual sublayers of the deep entorhinal cortex in future experiments and models will be important for establishing systems-level mechanisms for spatial cognition and episodic memory.


Assuntos
Córtex Entorrinal , Memória Episódica , Cognição , Córtex Entorrinal/fisiologia , Hipocampo/fisiologia , Humanos , Neurônios/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA