Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Environ Microbiol ; 26(1): e16555, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38148519

RESUMO

Many moss species are associated with nitrogen (N)-fixing bacteria (diazotrophs) that support the N supply of mosses. Our knowledge relates primarily to pristine ecosystems with low atmospheric N input, but knowledge of biological N fixation (BNF) and diazotrophic communities in mosses in temperate forests with high N deposition is limited. We measured BNF rates using the direct stable isotope method and studied the total and potentially active diazotrophic communities in two abundant mosses, Brachythecium rutabulum and Hypnum cupressiforme, both growing on lying deadwood trunks in 25 temperate forest sites. BNF rates in both mosses were similar to those observed in moss species of pristine ecosystems. H. cupressiforme fixed three times more N2 and exhibited lower diazotrophic richness than B. rutabulum. Frankia was the most prominent diazotroph followed by cyanobacteria Nostoc. Manganese, iron, and molybdenum contents in mosses were positively correlated with BNF and diazotrophic communities. Frankia maintained high BNF rates in H. cupressiforme and B. rutabulum even under high chronic N deposition in Central European forests. Moss N concentration and 15 N abundance indicate a rather minor contribution of BNF to the N nutrition of these mosses.


Assuntos
Briófitas , Bryopsida , Nostoc , Ecossistema , Fixação de Nitrogênio , Florestas , Nitrogênio
2.
Microb Ecol ; 85(2): 411-428, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35124727

RESUMO

Recently, a new annotation tool "FungalTraits" was created based on the previous FUNGuild and FunFun databases, which has attracted high attention in the scientific community. These databases were widely used to gain more information from fungal sequencing datasets by assigning fungal functional traits. More than 1500 publications so far employed FUNGuild and the aim of this study is to compare this successful database with the recent FungalTraits database. Quality and quantity of the assignment by FUNGuild and FungalTraits to a fungal internal transcribed spacer (ITS)-based amplicon sequencing dataset on amplicon sequence variants (ASVs) were addressed. Sequencing dataset was derived from leaves and needles of 12 temperate broadleaved and coniferous tree species. We found that FungalTraits assigned more functional traits than FUNGuild, and especially the coverage of saprotrophs, plant pathogens, and endophytes was higher while lichenized fungi revealed similar findings. Moreover, ASVs derived from leaves and needles of each tree species were better assigned to all available fungal traits as well as to saprotrophs by FungalTraits compared to FUNGuild in particular for broadleaved tree species. Assigned ASV richness as well as fungal functional community composition was higher and more diverse after analyses with FungalTraits compared to FUNGuild. Moreover, datasets of both databases showed similar effect of environmental factors for saprotrophs but for endophytes, unidentical patterns of significant corresponding factors were obtained. As a conclusion, FungalTraits is superior to FUNGuild in assigning a higher quantity and quality of ASVs as well as a higher frequency of significant correlations with environmental factors.


Assuntos
Micobioma , Árvores , Árvores/microbiologia , Fungos , Folhas de Planta/microbiologia
3.
Proc Biol Sci ; 289(1974): 20220130, 2022 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-35538788

RESUMO

Microbial community members are the primary microbial colonizers and active decomposers of deadwood. This study placed sterilized standardized beech and spruce sapwood specimens on the forest ground of 8 beech- and 8 spruce-dominated forest sites. After 370 days, specimens were assessed for mass loss, nitrogen (N) content and 15N isotopic signature, hydrolytic and lignin-modifying enzyme activities. Each specimen was incubated with bromodeoxyuridine (BrdU) to label metabolically active fungal and bacterial community members, which were assessed using amplicon sequencing. Fungal saprotrophs colonized the deadwood accompanied by a distinct bacterial community that was capable of cellulose degradation, aromatic depolymerization, and N2 fixation. The latter were governed by the genus Sphingomonas, which was co-present with the majority of saprotrophic fungi regardless of whether beech or spruce specimens were decayed. Moreover, the richness of the diazotrophic Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium group was significantly correlated with mass loss, N content and 15N isotopic signature. By contrast, presence of obligate predator Bdellovibrio spp. shifted bacterial community composition and were linked to decreased beech deadwood decay rates. Our study provides the first account of the composition and function of metabolically active wood-colonizing bacterial and fungal communities, highlighting cross-kingdom interactions during the early and intermediate stages of wood decay.


Assuntos
Microbiota , Picea , Bactérias , Florestas , Fungos , Picea/microbiologia , Madeira/microbiologia
4.
Microb Ecol ; 84(1): 90-105, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34487212

RESUMO

Even though it is widely acknowledged that litter decomposition can be impacted by climate change, the functional roles of microbes involved in the decomposition and their answer to climate change are less understood. This study used a field experimental facility settled in Central Germany to analyze the effects of ambient vs. future climate that is expected in 50-80 years on mass loss and physicochemical parameters of wheat litter in agricultural cropland at the early phase of litter decomposition process. Additionally, the effects of climate change were assessed on microbial richness, community compositions, interactions, and their functions (production of extracellular enzymes), as well as litter physicochemical factors shaping their colonization. The initial physicochemical properties of wheat litter did not change between both climate conditions; however, future climate significantly accelerated litter mass loss as compared with ambient one. Using MiSeq Illumina sequencing, we found that future climate significantly increased fungal richness and altered fungal communities over time, while bacterial communities were more resistant in wheat residues. Changes on fungal richness and/or community composition corresponded to different physicochemical factors of litter under ambient (Ca2+, and pH) and future (C/N, N, P, K+, Ca2+, pH, and moisture) climate conditions. Moreover, highly correlative interactions between richness of bacteria and fungi were detected under future climate. Furthermore, the co-occurrence networks patterns among dominant microorganisms inhabiting wheat residues were strongly distinct between future and ambient climates. Activities of microbial ß-glucosidase and N-acetylglucosaminidase in wheat litter were increased over time. Such increased enzymatic activities were coupled with a significant positive correlation between microbial (both bacteria and fungi) richness and community compositions with these two enzymatic activities only under future climate. Overall, we provide evidence that future climate significantly impacted the early phase of wheat litter decomposition through direct effects on fungal communities and through indirect effects on microbial interactions as well as corresponding enzyme production.


Assuntos
Microbiota , Triticum , Bactérias/genética , Ecossistema , Fungos/genética , Folhas de Planta/microbiologia
5.
Appl Microbiol Biotechnol ; 106(2): 635-645, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35015141

RESUMO

Fluorescence spectroscopy offers a cheap, simple, and fast approach to monitor poly(3-hydroxybutyrate) (PHB) formation, a biodegradable polymer belonging to the biodegradable polyester class polyhydroxyalkanoates. In the present study, a fluorescence and side scatter-based spectroscopic setup was developed to monitor in situ biomass, and PHB formation of biotechnological applied Cupriavidus necator strain. To establish PHB quantification of C. necator, the dyes 2,2-difluoro-4,6,8,10,12-pentamethyl-3-aza-1-azonia-2-boranuidatricyclo[7.3.0.03,7]dodeca-1(12),4,6,8,10-pentaene (BODIPY493/503), ethyl 5-methoxy-1,2-bis(3-methylbut-2-enyl)-3-oxoindole-2-carboxylate (LipidGreen2), and 9-(diethylamino)benzo[a]phenoxazin-5-one (Nile red) were compared with each other. Fluorescence staining efficacy was obtained through 3D-excitation-emission matrix and design of experiments. The coefficients of determination were ≥ 0.98 for all three dyes and linear to the high-pressure liquid chromatography obtained PHB content, and the side scatter to the biomass concentration. The fluorescence correlation models were further improved by the incorporation of the biomass-related side scatter. Afterward, the resulting regression fluorescence models were successfully applied to nitrogen-deficit, phosphor-deficit, and NaCl-stressed C. necator cultures. The highest transferability of the regression models was shown by using LipidGreen2. The novel approach opens a tailor-made way for a fast and simultaneous detection of the crucial biotechnological parameters biomass and PHB content during fermentation. KEY POINTS: • Intracellular quantification of PHB and biomass using fluorescence spectroscopy. • Optimizing fluorescence staining conditions and 3D-excitation-emission matrix. • PHB was best obtained by LipidGreen2, followed by BODIPDY493/503 and Nile red.


Assuntos
Cupriavidus necator , Ácido 3-Hidroxibutírico , Biomassa , Hidroxibutiratos , Poliésteres , Espectrometria de Fluorescência
6.
Ecotoxicol Environ Saf ; 224: 112707, 2021 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-34461316

RESUMO

Biocides are used in building materials to protect the building against microbial colonization and biodeterioration. However, these biocides are introduced by gradual leaching into soils in proximity of the buildings. This review discusses the aspects and characteristics of biocides from building materials in terms of (i) in-situ leaching and simulation thereof in-vitro and in-field tests, (ii) persistence, as well as photolytic and biodegradation, and its influence on toxicological evaluation, and (iii) evaluation of terrestrial toxicity by conventional ecotoxicological tests and novel holistic testing approaches. These aspects are influenced by multiple parameters, out of which water availability, physicochemical properties of microhabitats, combination of biocidal building materials, soil parameters, and composition of the soil microbiome are of utmost relevance. Deeper understanding of this multiparametric system and development of comprehensive characterization methodologies remains crucial, as to facilitate realistic assessment of the environmental impact of biocides used in construction materials and the corresponding degradation byproducts.

7.
Hautarzt ; 72(6): 549-556, 2021 Jun.
Artigo em Alemão | MEDLINE | ID: mdl-33730257

RESUMO

BACKGROUND: The importance of the skin microbiome in the pathogenesis of atopic dermatitis (AD) is gaining increasing attention in current research and offers opportunities for new innovative treatment options. OBJECTIVES: This study investigated the efficacy of a probiotic bath additive on clinical symptoms and skin microbiome of patients with AD. MATERIALS AND METHODS: The study was randomized and double-blind: 22 patients applied a 10-min partial bath with 4.5â€¯× 109 or 9â€¯× 109 colony-forming units (CFU) of viable lactic acid bacteria per liter daily over a period of 14 days. The clinical symptoms were documented using the SCORing Atopic Dermatitis (SCORAD) index and a patient questionnaire at day 0, day 7 and day 14. In addition, skin swabs were taken for subsequent nucleic acid extraction for quantitative Staphylococcus aureus polymerase chain reaction and microbiome analysis using amplicon sequencing. RESULTS: Comparable efficacy was documented in both treatment groups: Probiotic baths with a concentration of 4.5-9â€¯× 109 CFU/liter led to a significant reduction in SCORAD scores (start of study: 63.04) and local SCORAD (14.68) on day 7 (SCORAD 47.09, local SCORAD 10.99) and day 14 (SCORAD 35.26, local SCORAD 8.54). Furthermore, the patient-assessed parameters skin dryness and itching improved significantly over the treatment period. At the same time, the mean gene copy number of S. aureus decreased by about 83% and microbiome analyses showed an increase in the richness of the bacterial community. CONCLUSIONS: Topical application of a probiotic bath represents a promising supportive treatment option for AD that alleviates existing dysbiosis.


Assuntos
Dermatite Atópica , Probióticos , Banhos , Dermatite Atópica/diagnóstico , Dermatite Atópica/terapia , Humanos , Probióticos/uso terapêutico , Índice de Gravidade de Doença , Staphylococcus aureus , Resultado do Tratamento
8.
Appl Environ Microbiol ; 85(4)2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30530712

RESUMO

Copper-based fungicides are routinely used for wood and plant protection, which can lead to an enrichment of copper-tolerant microbial communities in soil. To investigate the effect of such wood preservatives on the soil fungal and bacterial community compositions, five different vineyard and fruit-growing soil environments were evaluated using incubation studies over time. Pine sapwood specimens were impregnated with either water or different biocide treatment solutions containing a mixture of copper, triazoles, and quaternary ammonium compounds (CuTriQAC), a mixture of triazoles and quaternary ammonium compounds (TriQAC), or copper alone (Cu). Specimens were incubated in soil from each sample site for 8, 16, 24, and 32 weeks. The effects of preservative treatment on the modulus of elasticity (MOE) of the wood specimens and on the soil fungal as well as bacterial community composition at the soil-wood interface were assessed by quantitative PCR and amplicon sequencing of the fungal internal transcribed spacer (ITS) region and bacterial 16S rRNA gene. Specimens impregnated with CuTriQAC and Cu showed decreased MOE and reduced fungal and bacterial copy numbers over time compared to those impregnated with water and TriQAC. Fungal but not bacterial community composition was significantly affected by wood preservative treatment. The relative abundance of members of the family Trichocomaceae compared to other genera increased in the presence of the Cu and CuTriQAC treatments at three sites, suggesting these to be Cu-tolerant fungi. In conclusion, the copper-containing treatments resulted in marginally increased MOE, lowered microbial gene copy numbers compared to those in the TriQAC and water treatments, and thus enhanced wood protection against soil microbial wood degradation.IMPORTANCE Copper-containing rather than TRIQAC formulations are efficient wood preservatives irrespective of the origin and composition of the soil microbial communities. However, some fungi appear to be naturally insensitive to copper and should be the focus of future wood preservative formulations to facilitate the life span of wooden construction in contact with soil while also minimizing the overall environmental impact.


Assuntos
Bactérias/efeitos dos fármacos , Cobre/farmacologia , Fungos/efeitos dos fármacos , Fungicidas Industriais/farmacologia , Consórcios Microbianos/efeitos dos fármacos , Madeira/microbiologia , Bactérias/genética , Bactérias/crescimento & desenvolvimento , DNA Bacteriano , DNA Fúngico , Desinfetantes/farmacologia , Fungos/genética , Fungos/crescimento & desenvolvimento , Dosagem de Genes , Compostos de Amônio Quaternário/farmacologia , RNA Ribossômico 16S/genética , Solo , Microbiologia do Solo , Triazóis/farmacologia
9.
J Food Sci Technol ; 56(3): 1613-1621, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30956342

RESUMO

Nisin is frequently added as food additive to soft cheese to increase food safety against foodborne pathogens like Listeria monocytogenes. The goal of this study was the extension of the antimicrobial activity of nisin in sour curd cheese (SCC) by self-releasing adsorbed nisin from Neusilin UFL2 over production-based pH shift. First, the antimicrobial activity of nisin adsorbed to Neusilin UFL2 (UFL2-N) and free nisin was investigated in BHI broth at a pH range from 7.5 to 4.5 for each of six L. monocytogenes field isolates. UFL2-N showed similar minimal inhibition concentration to L. monocytogenes over time as free nisin. Distribution of nebulized, fluorescence-labelled UFL2 was homogenous on SCC surface. Thereafter, SCC surface was inoculated with L. monocytogenes and 0.004, 0.013, 0.026, and 0.132 mg mL-1 UFL2-N or free nisin. In SCC, L. monocytogenes was below quantification limit at 0.132 mg mL-1 UFL2-N or free nisin after 2 days of ripening. Collectively, UFL2-N enabled a slow release and antilisterial activity in vitro as well as in cheese manufacturing.

10.
Environ Microbiol ; 16(6): 1682-94, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24118927

RESUMO

Methanogenic microbial communities in soil and sediment function only when the environment is inundated and anoxic. In contrast to submerged soils, desiccation of lake sediments happens only rarely. However, some predictions suggest that extreme events of drying will become more common in the Amazon region, and this will promote an increase in sediments drying and exposure. We asked whether and how such methanogenic communities can withstand desiccation stress. Therefore, we determined the rates and pathways of CH(4) production (analysis of CH(4) and δ(13) C of CH(4), CO(2) and acetate), the copy numbers of bacterial and archaeal 16S rRNA genes and mcrA genes (quantitative PCR), and the community composition of Archaea and Bacteria (T-RFLP and pyrosequencing) in oxbow lake sediments of rivers in the Brazilian Amazon region. The rivers were of white water, black water and clear water type. The measurements were done with sediment in fresh state and after drying and rewetting. After desiccation and rewetting the composition of both, the archaeal and bacterial community changed. Since lake sediments from white water rivers exhibited only negligible methanogenic activity, probably because of relatively high iron and low organic matter content, they were not further analysed. The other sediments produced CH(4), with hydrogenotrophic methanogenesis usually accounting for > 50% of total activity. After desiccation and rewetting, archaeal and bacterial gene copy numbers decreased. The bacterial community showed a remarkable increase of Clostridiales from about 10% to > 30% of all Bacteria, partially caused by proliferation of specific taxa as the numbers of OTU shared with fresh sediment decreased from about 9% to 3%. Among the Archaea, desiccation specifically enhanced the relative abundance of either Methanocellales (black water) and/or Methanosarcinaceae (clear water). Despite the changes in gene copy numbers and composition of the microbial community, rates of CH(4) production even increased after desiccation-rewetting, demonstrating that the function of the methanogenic microbial community had not been impaired. This result indicates that the increase in extreme events of drying may increase methane production in flooded sediments.


Assuntos
Euryarchaeota/genética , Sedimentos Geológicos/microbiologia , Bacilos Gram-Positivos Formadores de Endosporo/genética , Brasil , Desidratação , Dosagem de Genes , Genes Arqueais , Genes Bacterianos , Lagos/microbiologia , Metano/biossíntese , Microbiota/genética , Polimorfismo de Fragmento de Restrição , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Estresse Fisiológico
11.
Sci Total Environ ; 912: 168689, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38000743

RESUMO

Combinations of biocides are commonly added to building materials to prevent microbial growth and thereby cause degradation of the façades. These biocides reach the environment by leaching from façades posing an environmental risk. Although ecotoxicity to the aquatic habitat is well established, there is hardly any data on the ecotoxicological effects of biocides on the soil habitat. This study aimed to characterize the effect of the biocides terbutryn, isoproturon, octhilinone, and combinations thereof on the total and metabolically active soil microbial community composition and functions. Total soil microbial community was retrieved directly from the nucleic acid extracts, while the DNA of the active soil microbial community was separated after bromodeoxyuridine labeling. Bacterial 16S rRNA gene and fungal internal transcribed spacer region gene-based amplicon sequencing was carried out for both active and total, while gene copy numbers were quantified only for the total soil microbial community. Additionally, soil respiration and physico-chemical parameters were analyzed to investigate overall soil microbial activity. The bacterial and fungal gene copy numbers were significantly affected by single biocides and combined biocide soil treatment but not soil respiration and physico-chemical parameters. While the total soil microbiome experienced only minor effects from single and combined biocide treatment, the active soil microbiome was significantly impacted in its diversity, richness, composition, and functional patterns. The active bacterial richness was more sensitive than fungal richness. However, the adverse effects of the biocide combination treatments on soil bacterial richness were highly dependent on the identities of the biocide combination. Our results demonstrate that the presence of biocides frequently used in building materials affects the active soil microbiome. Thereby, the approach described herein can be used as an ecotoxicological measure for the effect on complex soil environments in future studies.


Assuntos
Desinfetantes , Microbiota , Desinfetantes/análise , Microbiologia do Solo , Solo , RNA Ribossômico 16S/genética , Materiais de Construção , Proliferação de Células
12.
ISME J ; 18(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38519103

RESUMO

Deadwood provides habitat for fungi and serves diverse ecological functions in forests. We already have profound knowledge of fungal assembly processes, physiological and enzymatic activities, and resulting physico-chemical changes during deadwood decay. However, in situ detection and identification methods, fungal origins, and a mechanistic understanding of the main lignocellulolytic enzymes are lacking. This study used metaproteomics to detect the main extracellular lignocellulolytic enzymes in 12 tree species in a temperate forest that have decomposed for 8 ½ years. Mainly white-rot (and few brown-rot) Basidiomycota were identified as the main wood decomposers, with Armillaria as the dominant genus; additionally, several soft-rot xylariaceous Ascomycota were identified. The key enzymes involved in lignocellulolysis included manganese peroxidase, peroxide-producing alcohol oxidases, laccase, diverse glycoside hydrolases (cellulase, glucosidase, xylanase), esterases, and lytic polysaccharide monooxygenases. The fungal community and enzyme composition differed among the 12 tree species. Ascomycota species were more prevalent in angiosperm logs than in gymnosperm logs. Regarding lignocellulolysis as a function, the extracellular enzyme toolbox acted simultaneously and was interrelated (e.g. peroxidases and peroxide-producing enzymes were strongly correlated), highly functionally redundant, and present in all logs. In summary, our in situ study provides comprehensive and detailed insight into the enzymatic machinery of wood-inhabiting fungi in temperate tree species. These findings will allow us to relate changes in environmental factors to lignocellulolysis as an ecosystem function in the future.


Assuntos
Ascomicetos , Basidiomycota , Madeira/microbiologia , Ecossistema , Árvores , Basidiomycota/fisiologia , Peróxidos/metabolismo , Fungos
13.
Arch Toxicol ; 87(12): 2249-62, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23779146

RESUMO

In light of the broad spectrum of products containing nanosilver, the harmfulness of nanosilver to human health and the environment was intensively discussed at a conference held in February 2012 at the BfR. The conference agenda covered the aspects of analytics of nanosilver materials, human exposure and toxicology as well as effects on microorganisms and the environment. The discussion recovered major gaps related to commonly agreed guidelines for sample preparation and central analytical techniques. In particular, the characterization of the nanoparticles in complex matrices was regarded as a challenge which might become a pitfall for further innovation and application. Historical and anecdotal records of colloidal silver have been sometimes taken as empirical proof for the general low toxicity of nanosilver. Yet as reported herein, a growing number of animal studies following modern performance standards of toxicity testing have been carried out recently revealing well-characterized adverse effects on different routes of exposure in addition to argyria. Furthermore, recent approaches in exposure assessment were reported. However, consumer exposure scenarios are only starting to be developed and reliable exposure data are still rare. It was further widely agreed on the workshop that the use of silver may lead to the selection of silver resistant bacteria. With respect to its environmental behavior, it was suggested that nanosilver released to wastewater may have negligible ecotoxicological effects. Finally, the presentations and discussion on risk assessment and regulation of nanosilver applications gave insights into different approaches of risk assessment of nanomaterials to be performed under the various regulatory frameworks.


Assuntos
Nanopartículas Metálicas/efeitos adversos , Compostos de Prata/efeitos adversos , Compostos de Prata/análise , Animais , Qualidade de Produtos para o Consumidor , Resistência a Medicamentos , Exposição Ambiental , União Europeia , Humanos , Legislação de Medicamentos , Nanopartículas Metálicas/toxicidade , Nanoestruturas , Medição de Risco , Compostos de Prata/toxicidade , Testes de Toxicidade
14.
Microorganisms ; 11(1)2023 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-36677449

RESUMO

The prevalence of potential human pathogenic members of the order Rickettsiales differs between Borrelia burgdorferi sensu lato-positive and -negative tick microbiomes. Here, co-infection of members of the order Rickettsiales, such as Rickettsia spp., Anaplasma phagocytophilum, Wolbachia pipientis, and Neoehrlichia mikurensis as well as B. burgdorferi s.l. in the tick microbiome was addressed. This study used conventional PCRs to investigate the diversity and prevalence of the before-mentioned bacteria in 760 nucleic acid extracts of I. ricinus ticks detached from humans, which were previously tested for B. burgdorferi s.l.. A gltA gene-based amplicon sequencing approach was performed to identify Rickettsia species. The prevalence of Rickettsia spp. (16.7%, n = 127) and W. pipientis (15.9%, n = 121) were similar, while A. phagocytophilum was found in 2.8% (n = 21) and N. mikurensis in 0.1% (n = 1) of all ticks. Co-infection of B. burgdorferi s. l. with Rickettsia spp. was most frequent. The gltA gene sequencing indicated that Rickettsia helvetica was the dominant Rickettsia species in tick microbiomes. Moreover, R, monacensis and R. raoultii were correlated with autumn and area south, respectively, and a negative B. burgdorferi s. l. finding. Almost every fifth tick carried DNA of at least two of the human pathogenic bacteria studied here.

15.
Front Microbiol ; 14: 1271498, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37965543

RESUMO

Honey bees are crucial for our ecosystems as pollinators, but the intensive use of plant protection products (PPPs) in agriculture poses a risk for them. PPPs do not only affect target organisms but also affect non-targets, such as the honey bee Apis mellifera and their microbiome. This study is the first of its kind, aiming to characterize the effect of PPPs on the microbiome of the cuticle of honey bees. We chose PPPs, which have frequently been detected in bee bread, and studied their effects on the cuticular microbial community and function of the bees. The effects of the fungicide Difcor® (difenoconazole), the insecticide Steward® (indoxacarb), the combination of both (mix A) and the fungicide Cantus® Gold (boscalid and dimoxystrobin), the insecticide Mospilan® (acetamiprid), and the combination of both (mix B) were tested. Bacterial 16S rRNA gene and fungal transcribed spacer region gene-based amplicon sequencing and quantification of gene copy numbers were carried out after nucleic acid extraction from the cuticle of honey bees. The treatment with Steward® significantly affected fungal community composition and function. The fungal gene copy numbers were lower on the cuticle of bees treated with Difcor®, Steward®, and PPP mix A in comparison with the controls. However, bacterial and fungal gene copy numbers were increased in bees treated with Cantus® Gold, Mospilan®, or PPP mix B compared to the controls. The bacterial cuticular community composition of bees treated with Cantus® Gold, Mospilan®, and PPP mix B differed significantly from the control. In addition, Mospilan® on its own significantly changed the bacterial functional community composition. Cantus® Gold significantly affected fungal gene copy numbers, community, and functional composition. Our results demonstrate that PPPs show adverse effects on the cuticular microbiome of honey bees and suggest that PPP mixtures can cause stronger effects on the cuticular community than a PPP alone. The cuticular community composition was more diverse after the PPP mix treatments. This may have far-reaching consequences for the health of honey bees.

16.
Microorganisms ; 11(11)2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-38004791

RESUMO

Bees come into contact with bacteria and fungi from flowering plants during their foraging trips. The Western honeybee (Apis mellifera) shows a pronounced hygienic behavior with social interactions, while the solitary red mason bee (Osmia bicornis) lacks a social immune system. Since both visit the same floral resources, it is intriguing to speculate that the body surface of a solitary bee should harbor a more complex microbiome than that of the social honeybee. We compared the cuticular microbiomes of A. mellifera (including three European subspecies) and O. bicornis for the first time by bacterial 16S rRNA and fungal ITS gene-based high-throughput amplicon sequencing. The cuticular microbiome of the solitary O. bicornis was significantly more complex than that of the social A. mellifera. The microbiome composition of A. mellifera subspecies was very similar. However, we counted significantly different numbers of fungi and a higher diversity in the honeybee subspecies adapted to warmer climates. Our results suggest that the cuticular microbiome of bees is strongly affected by visited plants, lifestyle and adaptation to temperature, which have important implications for the maintenance of the health of bees under conditions of global change.

17.
In Vivo ; 37(2): 702-708, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36881085

RESUMO

BACKGROUND/AIM: The aim of this phantom study was to evaluate the learning curves of novices practicing how to place a cone-beam computed tomography (CBCT)-guided needle using a novel robotic assistance system (RAS). MATERIALS AND METHODS: Ten participants performed 18 punctures each with random trajectories in a phantom setting, supported by a RAS over 3 days. Precision, duration of the total intervention, duration of the needle placement, autonomy, and confidence of the participants were measured, displaying possible learning curves. RESULTS: No statistically significant differences were observed in terms of needle tip deviation during the trial days (mean deviation day 1: 2.82 mm; day 3: 3.07 mm; p=0.7056). During the trial days, the duration of the total intervention (mean duration: day 1: 11:22 min; day 3: 07:39 min; p<0.0001) and the duration of the needle placement decreased (mean duration: day 1: 03:17 min; day 3: 02:11 min; p<0.0001). In addition, autonomy (mean percentage of achievable points: day 1: 94%; day 3: 99%; p<0.0001) and confidence of the participants (mean percentage of achievable points: day 1: 78%; day 3: 91%; p<0.0001) increased significantly during the trial days. CONCLUSION: The participants were already able to carry out the intervention precisely using the RAS on the first day of the trial. Throughout the trial, the participants' performance improved in terms of duration and confidence.


Assuntos
Robótica , Humanos , Punções , Tomografia Computadorizada de Feixe Cônico
18.
Sci Total Environ ; 900: 165868, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37516186

RESUMO

Enhanced nitrogen (N) deposition due to combustion of fossil fuels and agricultural fertilization is a global phenomenon which has severely altered carbon (C) and N cycling in temperate forest ecosystems in the northern hemisphere. Although deadwood holds a substantial amount of C in forest ecosystems and thus plays a crucial role in nutrient cycling, the effect of increased N deposition on microbial processes and communities, wood chemical traits and deadwood mass loss remains unclear. Here, we simulated high N deposition rates by adding reactive N in form of ammonium-nitrate (40 kg N ha-1 yr-1) to deadwood of 13 temperate tree species over nine years in a field experiment in Germany. Non-treated deadwood from the same logs served as control with background N deposition. Our results show that chronically elevated N levels alters deadwood mass loss alongside respiration, enzymatic activities and wood chemistry depending on tree clade and species. In gymnosperm deadwood, elevated N increased mass loss by +38 %, respiration by +37 % and increased laccase activity 12-fold alongside increases of white-rot fungal abundance +89 % (p = 0.03). Furthermore, we observed marginally significant (p = 0.06) shifts of bacterial communities in gymnosperm deadwood. In angiosperm deadwood, we did not detect consistent effects on mass loss, physico-chemical properties, extracellular enzymatic activity or changes in microbial communities except for changes in abundance of 10 fungal OTUs in seven tree species and 28 bacterial OTUs in 10 tree species. We conclude that N deposition alters decomposition processes exclusively in N limited gymnosperm deadwood in the long term by enhancing fungal activity as expressed by increases in respiration rate and extracellular enzyme activity with minor shifts in decomposing microbial communities. By contrast, deadwood of angiosperm tree species had higher N concentrations and mass loss as well as community composition did not respond to N addition.


Assuntos
Magnoliopsida , Microbiota , Fungos , Nitrogênio/análise , Cycadopsida , Florestas , Árvores/microbiologia , Bactérias , Microbiologia do Solo , Solo
19.
Front Plant Sci ; 14: 1239600, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38094000

RESUMO

Background: Tree mycorrhizal types (arbuscular mycorrhizal fungi and ectomycorrhizal fungi) alter nutrient use traits and leaf physicochemical properties and, thus, affect leaf litter decomposition. However, little is known about how different tree mycorrhizal species affect the microbial diversity, community composition, function, and community assembly processes that govern leaf litter-dwelling microbes during leaf litter decomposition. Methods: In this study, we investigated the microbial diversity, community dynamics, and community assembly processes of nine temperate tree species using high-resolution molecular technique (Illumina sequencing), including broadleaved arbuscular mycorrhizal, broadleaved ectomycorrhizal, and coniferous ectomycorrhizal tree types, during leaf litter decomposition. Results and discussion: The leaves and needles of different tree mycorrhizal types significantly affected the microbial richness and community composition during leaf litter decomposition. Leaf litter mass loss was related to higher sequence reads of a few bacterial functional groups, particularly N-fixing bacteria. Furthermore, a link between bacterial and fungal community composition and hydrolytic and/or oxidative enzyme activity was found. The microbial communities in the leaf litter of different tree mycorrhizal types were governed by different proportions of determinism and stochasticity, which changed throughout litter decomposition. Specifically, determinism (mainly variable selection) controlling bacterial community composition increased over time. In contrast, stochasticity (mainly ecological drift) increasingly governed fungal community composition. Finally, the co-occurrence network analysis showed greater competition between bacteria and fungi in the early stages of litter decomposition and revealed a contrasting pattern between mycorrhizal types. Conclusion: Overall, we conclude that tree mycorrhizal types influence leaf litter quality, which affects microbial richness and community composition, and thus, leaf litter decomposition.

20.
Sci Total Environ ; 873: 162230, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36796697

RESUMO

Poly(butylene succinate-co-adipate) (PBSA) degradation and its plastisphere microbiome in cropland soils have been studied; however, such knowledge is limited in the case of forest ecosystems. In this context, we investigated: i) the impact of forest types (conifer and broadleaved forests) on the plastisphere microbiome and its community assembly, ii) their link to PBSA degradation, and iii) the identities of potential microbial keystone taxa. We determined that forest type significantly affected microbial richness (F = 5.26-9.88, P = 0.034 to 0.006) and fungal community composition (R2 = 0.38, P = 0.001) of the plastisphere microbiome, whereas its effects on microbial abundance and bacterial community composition were not significant. The bacterial community was governed by stochastic processes (mainly homogenizing dispersal), whereas the fungal community was driven by both stochastic and deterministic processes (drift and homogeneous selection). The highest molar mass loss was found for PBSA degraded under Pinus sylvestris (26.6 ± 2.6 to 33.9 ± 1.8 % (mean ± SE) at 200 and 400 days, respectively), and the lowest molar mass loss was found under Picea abies (12.0 ± 1.6 to 16.0 ± 0.5 % (mean ± SE) at 200 and 400 days, respectively). Important fungal PBSA decomposers (Tetracladium) and atmospheric dinitrogen (N2)-fixing bacteria (symbiotic: Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium and Methylobacterium and non-symbiotic: Mycobacterium) were identified as potential keystone taxa. The present study is among the first to determine the plastisphere microbiome and its community assembly processes associated with PBSA in forest ecosystems. We detected consistent biological patterns in the forest and cropland ecosystems, indicating a potential mechanistic interaction between N2-fixing bacteria and Tetracladium during PBSA biodegradation.


Assuntos
Plásticos Biodegradáveis , Microbiota , Árvores , Solo , Florestas , Bactérias/metabolismo , Adipatos/metabolismo , Succinatos/metabolismo , Microbiologia do Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA