Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell Tissue Bank ; 25(1): 389-400, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38159136

RESUMO

Exosomes, the naturally secreted nanocarriers of cells, have recently been demonstrated to have therapeutic benefits in a variety of disease models where parent cells are not present. However, the use of exosomes in bone defect regeneration has been unusual, and little is documented about the underlying processes. In recent study we produced and characterized exosomes derived human endometrial mesenchymal stem stromal cells and 58S bioactive glass scaffolds; in following, in this research exosome loaded scaffolds synthetized and release of exosome, porosity and bioactivity of them were assessed. More over the effect of scaffolds on repair of critical-size bone defects in rat's calvaria was evaluated by histological examination and micro computed tomography (µ CT). The findings confirmed that constructed porous scaffolds consistently release exosomes; additionally, in vivo findings including Hematoxilin & Eosin staining, Immunohistochemistry, Masson's trichrome, histomorphometric analysis, and µ CT clarified that our implant has osteogenic properties. We discovered that Exo-treated scaffolds might promote osteogenesis especially compared to pure scaffolds, indicating that produced scaffolds containing exosomes could be a potential replacement in bone tissue engineering.


Assuntos
Exossomos , Vidro , Alicerces Teciduais , Ratos , Humanos , Animais , Alicerces Teciduais/química , Microtomografia por Raio-X , Diferenciação Celular , Regeneração Óssea , Osteogênese , Crânio , Porosidade
2.
Cell Tissue Bank ; 24(1): 75-91, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35641803

RESUMO

Parkinson disease (PD) is considered as one of the most worldwide neurodegenerative disorders. The major reasons associated to neurodegeneration process of PD pathogenesis are oxidative stress. Many studies reported that natural antioxidant molecules, especially, curcumin can suppress inflammatory pathways and preserve dopaminergic neurons damage in PD. Further, the poor pharmacokinetics, instability of chemical structure because of fast hydrolytic degradation at physiologic condition and especially, the presence of the blood brain barrier (BBB) has regarded as a considerable restriction factor for transfer of neurotherapeutic molecules to the brain tissue. The present research aims to the fabrication of nanoformulated curcumin loaded human endometrial stem cells derived exosomes (hEnSCs EXOs-Cur) to study on enhancing curcumin penetration to the brain across BBB and to improve anti- Parkinsonism effects of curcumin against neural death and alpha-synuclein aggregation. hEnSCs EXOs-Cur characterization results demonstrated the accurate size and morphology of formulated curcumin loaded exosomes with a proper stability and sustained release profile. In vivo studies including behavioral, Immunohistochemical and molecular evaluations displayed that novel formulation of hEnSCs EXO-Cur is able to cross BBB, enhance motor uncoordinated movements, suppress the aggregation of αS protein and rescue neuronal cell death through elevation of BCL2 expression level as an anti-apoptotic protein and the expression level reduction of BAX and Caspase 3 as apoptotic markers.


Assuntos
Curcumina , Exossomos , Doença de Parkinson , Camundongos , Animais , Humanos , Doença de Parkinson/tratamento farmacológico , alfa-Sinucleína/metabolismo , alfa-Sinucleína/uso terapêutico , Curcumina/farmacologia , Curcumina/química , Curcumina/uso terapêutico , Exossomos/metabolismo , Modelos Animais de Doenças
3.
Cell Tissue Bank ; 24(2): 389-400, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36190669

RESUMO

In this study, hydroxyapatite (HA) scaffolds were synthesized and characterized, following the osteogenic and angiogenic effects of HA scaffolds with or without endometrial mesenchymal stem stromal cells (hEnSCs) derived Exosomes were investigated in rat animal model with calvaria defect. The X-ray diffraction (XRD) analysis of HA powder formation was confirmed with Joint Corporation of Powder Diffraction Standards (JCPDS) files numbers of 34-0010 and 24-0033A and Ball mill, and sintering manufactured Nano-size particles. Obtained results containing FE-SEM images presented that the surface of scaffolds has a rough and porous structure, which makes them ideal and appropriate for tissue engineering. Additionally, the XRD showed that these scaffolds exhibited a crystallized structure without undergoing phase transformation; meanwhile, manufactured scaffolds consistently release exosomes; moreover, in vivo findings containing hematoxylin-eosin staining, immunohistochemistry, Masson's trichrome staining, and histomorphometric analysis confirmed that our implant has an osteogenic and angiogenic characteristic. So prepared scaffolds containing exosomes can be proposed as a promising substitute in tissue engineering.


Assuntos
Durapatita , Exossomos , Ratos , Animais , Durapatita/química , Durapatita/farmacologia , Alicerces Teciduais/química , Células Cultivadas , Regeneração Óssea
4.
Cell Tissue Res ; 390(1): 71-92, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35788900

RESUMO

Despite advances in the treatment of acute myocardial infarction, due to the non-proliferative nature of adult cardiomyocytes, the injured myocardium is mainly replaced by fibrotic tissue, which ultimately causes heart failure. To prevent heart failure, particularly after myocardial infarction, exosome-based therapy has emerged as one of the most promising strategies to regenerate cardiac function. Exosomes can carry microRNAs in support of neovascularization, anti-inflammatory, and endogenous cardiac regeneration. This study demonstrated that animal rat models' combination treatment with microRNA-126 and microRNA-146a mimics in exosomes is desirable for cardiac regeneration after myocardial infarction. The exosomes isolated from stem cells and loaded with microRNAs were characterized their impacts in cell migration, tube formation, and vascular endothelial growth factor degree. In the following, the usefulness of loaded microRNAs in exosomes and their encapsulation within alginate derivative hydrogel was analyzed in myocardial infarction for an animal model. Exosomes isolated and loaded with microRNAs showed the synergetic impact on cell migration, tube formation, and promoted vascular endothelial growth factor folding. Moreover, microRNAs loaded exosomes and encapsulated them in alginate hydrogel could help in reducing infarct size and improving angiogenesis in myocardial infarction. The angiogenesis markers including CD31 and connexion 43 upregulated for myocardial infarction models treated with alginate-based hydrogels loaded with exosomes and microRNAs-exosomes. Histological analysis indicated that myocardial infarction model rats treated with alginate hydrogel loaded with microRNAs-exosomes possessed lower and higher degrees of fibrosis and collagen fiber, respectively. These findings have important therapeutic implications for a myocardial infarction model through angiogenesis and vascular integrity regulation.


Assuntos
Exossomos , Insuficiência Cardíaca , MicroRNAs , Infarto do Miocárdio , Alginatos , Animais , Colágeno/metabolismo , Exossomos/metabolismo , Fibrose , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/patologia , Hidrogéis , MicroRNAs/genética , MicroRNAs/metabolismo , Infarto do Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Neovascularização Fisiológica , Ratos , Fator A de Crescimento do Endotélio Vascular/metabolismo
5.
Microvasc Res ; 143: 104385, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35609635

RESUMO

Exosomes are endogenous nanoparticles with a lipid bilayer membrane whose natural function as carriers of biological materials has attracted much attention. The ability of exosomes to cross biological barriers, especially the blood-brain barrier, has highlighted them as tools of drug delivery to brain tumors. In a previous study, we isolated and characterized exosomes derived from human endometrial mesenchymal stem cells (hEnMSCs exosomes). In the present study, we used hEnMSCs exosomes as carriers for atorvastatin and investigated its pro-apoptotic and anti-angiogenic effects on U87 glioblastoma spheroids 3D co-cultured with Human Umbilical Vein Endothelial cells (HUVECs). In the study of HUVEC proliferation by using MTT assay, cell treatments with concentrations of 5 and 10 µM of free atorvastatin and atorvastatin-loaded hEnMSCs exosomes (AtoEXOs) showed significant differences in inhibition of proliferation compared to other concentrations. Also, 5 and 10 µM of AtoEXOs inhibited HUVEC migration in both scratch closure and transwell migration assays significantly more than that of free atorvastatin. In addition, in vitro HUVEC capillary tube network formation was inhibited by 5 and 10 µM treatment of AtoEXOs significantly more that of free atorvastatin. Moreover, a significant decrease in VEGF secretion and a significant increase in Bax/Bcl2 expression ratio were observed in U87 spheroids 3D co-cultured with HUVECs, especially for 10 µM AtoEXOs compared to other treated cell groups. Our results showed that hEnMSCs exosomes loaded with atorvastatin not only mimicked the anti-tumor effects of free atorvastatin but also potentiated its anti-tumor effects on glioblastoma cells. The enhanced pro-apoptotic and anti-angiogenic capabilities of atorvastatin loaded in hEnMSCs exosomes offer promising new perspectives for the treatment of glioblastoma.


Assuntos
Exossomos , Glioblastoma , Inibidores da Angiogênese/metabolismo , Atorvastatina/farmacologia , Proliferação de Células , Exossomos/metabolismo , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Glioblastoma/patologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos
6.
J Cell Biochem ; 119(10): 8048-8073, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29377241

RESUMO

Mesenchymal stem cells (MSCs) are adult multipotent cells that due to their ability to homing to damaged tissues and differentiate into specialized cells, are remarkable cells in the field of regenerative medicine. It's suggested that the predominant mechanism of MSCs in tissue repair might be related to their paracrine activity. The utilization of MSCs for tissue repair is initially based on the differentiation ability of these cells; however now it has been revealed that only a small fraction of the transplanted MSCs actually fuse and survive in host tissues. Indeed, MSCs supply the microenvironment with the secretion of soluble trophic factors, survival signals and the release of extracellular vesicles (EVs) such as exosome. Also, the paracrine activity of EVs could mediate the cellular communication to induce cell-differentiation/self-renewal. Recent findings suggest that EVs released by MSCs may also be critical in the physiological function of these cells. This review provides an overview of MSC-derived extracellular vesicles as a hopeful opportunity to advance novel cell-free therapy strategies that might prevail over the obstacles and risks associated with the use of native or engineered stem cells. EVs are very stable; they can pass the biological barriers without rejection and can shuttle bioactive molecules from one cell to another, causing the exchange of genetic information and reprogramming of the recipient cells. Moreover, extracellular vesicles may provide therapeutic cargo for a wide range of diseases and cancer therapy.


Assuntos
Vesículas Extracelulares/metabolismo , Células-Tronco Mesenquimais/citologia , Medicina Regenerativa/métodos , Animais , Comunicação Celular/fisiologia , Humanos
7.
Photochem Photobiol ; 98(6): 1447-1458, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35398890

RESUMO

The current study intended to evaluate the effect of photobiomodulation on the morphology and function of EVs secreted from mesenchymal stem cells (MSCs) derived from periodontal ligament (PDL) and the adipose tissue (ADSCs) (from buccal fat pad) in vitro. These cells were irradiated at 660 nm or kept in dark as control. EVs were then isolated from each group using ultracentrifugation. EVs were defined by flow cytometry and Western blot. Electron microscopy (SEM) was used to study the morphology of EVs. Then, MTT and wound-healing scratch assays were applied to compare the cell survival and migration of human dermal fibroblast (HDF) cells treated with the EVs obtained from the four groups. According to SEM images, isolated EV were round and cup-shaped in all groups showing no destructive effects of laser irradiation on EV morphology. MTT test results revealed a statistically significant difference between the HDF cells treated with different EV groups from hPDLSCs-Dark in comparison with control (0 µg/mL) (P < 0.05) and treated with exosome from hPDLSCs-Irradiation cells compared with dark group (P < 0.05). However, scratch wound-healing assay did not show a significant difference between various groups (P ˃ 0.05). Further studies with different irradiation protocols are recommended to find an optimal strategy.


Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais , Humanos , Vesículas Extracelulares/fisiologia , Tecido Adiposo , Cicatrização , Sobrevivência Celular
8.
RSC Adv ; 11(18): 10646-10669, 2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-35423538

RESUMO

Cancer is a complicated disease that involves the efforts of researchers to introduce and investigate novel successful treatments. Traditional cancer therapy approaches, especially chemotherapy, are prone to possible systemic side effects, such as the dysfunction of liver or kidney, neurological side effects and a decrease of bone marrow activity. Hydrogels, along with tissue engineering techniques, provide tremendous potential for scientists to overcome these issues through the release of drugs at the site of tumor. Hydrogels demonstrated competency as potent and stimulus-sensitive drug delivery systems for tumor removal, which is attributed to their unique features, including high water content, biocompatibility, and biodegradability. In addition, hydrogels have gained more attention as 3D models for easier and faster screening of cancer and tumors due to their potential in mimicking the extracellular matrix. Hydrogels as a reservoir can be loaded by an effective dosage of chemotherapeutic agents, and then deliver them to targets. In comparison to conventional procedures, hydrogels considerably decreased the total cost, duration of research, and treatment time. This study provides a general look into the potential role of hydrogels as a powerful tool to augment cancer studies for better analysis of cancerous cell functions, cell survival, angiogenesis, metastasis, and drug screening. Moreover, the upstanding application of drug delivery systems related to the hydrogel in order to sustain the release of desired drugs in the tumor cell-site were explored.

9.
Cell Biosci ; 11(1): 16, 2021 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-33436061

RESUMO

Oral mesenchymal stem cells (MSCs) and their secretomes are considered important factors in the field of medical tissue engineering and cell free biotherapy due to their ease of access, differentiation potential, and successful therapeutic outcomes. Extracellular vesicles (EVs) and the conditioned medium (CM) from MSCs are gaining more attraction as an alternative to cell-based therapies due to the less ethical issues involved, and their easier acquisition, preservation, long term storage, sterilization, and packaging. Bone and periodontal regenerative ability of EVs and CM have been the focus of some recent studies. In this review, we looked through currently available literature regarding MSCs' EVs or conditioned medium and their general characteristics, function, and regenerative potentials. We will also review the novel applications in regenerating bone and periodontal defects.

10.
ACS Biomater Sci Eng ; 7(12): 5397-5431, 2021 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-34797061

RESUMO

Large injuries to bones are still one of the most challenging musculoskeletal problems. Tissue engineering can combine stem cells, scaffold biomaterials, and biofactors to aid in resolving this complication. Therefore, this review aims to provide information on the recent advances made to utilize the potential of biomaterials for making bone scaffolds and the assisted stem cell therapy and use of biofactors for bone tissue engineering. The requirements and different types of biomaterials used for making scaffolds are reviewed. Furthermore, the importance of stem cells and biofactors (growth factors and extracellular vesicles) in bone regeneration and their use in bone scaffolds and the key findings are discussed. Lastly, some of the main obstacles in bone tissue engineering and future trends are highlighted.


Assuntos
Materiais Biocompatíveis , Engenharia Tecidual , Regeneração Óssea , Osso e Ossos , Células-Tronco
11.
J Biomed Mater Res A ; 109(5): 649-658, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-32608143

RESUMO

Current hyaluronic acid-based hydrogels often cause cytotoxicity to encapsulated cells and lack the adhesive property required for effective biomedical and tissue engineering applications. Provision of the cell-adhesive surface is an important requirement to improve its biocompatibility. An aqueous solution of hyaluronic acid possessing phenolic hydroxyl (HA-Ph) moieties is gellable via a horseradish peroxidase (HRP)-catalyzed oxidative cross-linking reaction. This study evaluates the effect of different degrees of cross-linked Ph moieties on cellular adhesiveness and proliferation on the resultant enzymatically cross-linked HA-Ph hydrogels. Mechanical characterization demonstrated that the compression force of engineered hydrogels could be tuned in the range of 0.05-35 N by changing conjugated Ph moieties in the precursor formulation. The water contact angle and water content show hydrophobicity of hydrogels increased with increasing content of cross-linked Ph groups. The seeded mouse embryo fibroblast-like cell line and human cervical cancer cell line, on the HA-Ph hydrogel, proved cell attachment and spreading with a high content of cross-linked Ph groups. The HA-Ph with a higher degree of Ph moieties shows the maximum degree of cell adhesion, spreading, and proliferation which presents this hydrogel as a suitable biomaterial for biomedical and tissue engineering applications.


Assuntos
Hidrogéis/farmacologia , Fenol/farmacologia , Animais , Adesão Celular , Encapsulamento de Células , Linhagem Celular , Força Compressiva , Reagentes de Ligações Cruzadas , Feminino , Fibroblastos , Células HeLa , Peroxidase do Rábano Silvestre/farmacologia , Humanos , Ácido Hialurônico/química , Interações Hidrofóbicas e Hidrofílicas , Testes Mecânicos , Camundongos , Água , Suporte de Carga
12.
Biochem Biophys Rep ; 23: 100792, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32793818

RESUMO

Exosomes (EXOs) are naturally occurring nanosized lipid bilayers that can be efficiently used as a drug delivery system to carry small pharmaceutical, biological molecules and pass major biological barriers such as the blood-brain barrier. It was hypothesized that EXOs derived from human endometrial stem cells (hEnSCs-EXOs) can be utilized as a drug carrier to enhance tumor-targeting drugs, especially for those have low solubility and limited oral bioactivity. In this study, atorvastatin (Ato) loaded EXOs (AtoEXOs) was prepared and characterized for its physical and biological activities in tumor growth suppression of 3 D glioblastoma model. The AtoEXOs were obtained in different methods to maximize drug encapsulation efficacy. The characterization of AtoEXOs was performed for its size, stability, drug release, and in vitro anti-tumor efficacy evaluated comprising inhibition of proliferation, apoptosis induction of tumor cells. Expression of apoptotic genes by Real time PCR, Annexin V/PI, tunnel assay was studied after 72 h exposing U87 cells where encapsulated in matrigel in different concentrations of AtoEXOs (5, 10 µM). The results showed that the prepared AtoEXOs possessed diameter ranging from 30-150 nm, satisfying stability and sustainable Ato release rate. The AtoEXOs was up taken by U87 and generated significant apoptotic effects while this inhibited tumor growth of U87 cells. Altogether, produced AtoEXOs formulation due to its therapeutic efficacy has the potential to be an adaptable approach to treat glioblastoma brain tumors.

13.
J Biomed Mater Res A ; 108(11): 2138-2149, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32319166

RESUMO

Combat or burn injuries are associated with a series of risks, such as microbial infection, an elevated level of inflammatory response, and pathologic scar tissue formation, which significantly postpone wound healing and also lead to impaired repair. Skin engineering for wound healing requires a biomimetic dressing substrate with ideal hydrophilicity, holding antioxidant and antimicrobial properties. In addition, available bioactive specification is required to reduce scar formation, stimulate angiogenesis, and improve wound repair. In this study, we successfully fabricated chitosan (Ch)-based hydrogel enriched with isolated exosome (EXO) from easy-accessible stem cells, which could promote fibroblast cell migration and proliferation in vitro. Full-thickness excisional wound model was used to investigate the in vivo dermal substitution ability of the fabricated hydrogel composed Ch and EXO substrates. Our finding confirmed that the wounds covered with Ch scaffold containing isolated EXO have nearly 83.6% wound closure ability with a high degree of re-epithelialization, whereas sterile gauze showed 51.5% of reduction in wound size. In summary, obtained results imply that Ch-glycerol-EXO hydrogel construct can be utilized at the full-thickness skin wound substitution and skin tissue engineering.


Assuntos
Bandagens , Quitosana/farmacologia , Exossomos , Hidrogéis/farmacologia , Cicatrização , Animais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Células Cultivadas , Quitosana/química , Exossomos/química , Humanos , Hidrogéis/química , Camundongos , Camundongos Endogâmicos BALB C , Pele/efeitos dos fármacos , Cicatrização/efeitos dos fármacos
14.
Gene ; 754: 144856, 2020 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-32512160

RESUMO

Growing evidence indicates the antitumor and antiangiogenesis activities of testis-specific gene antigen 10 (TSGA10). However, the underlying mechanisms and precise role of TSGA10 in angiogenesis are still elusive. In this study, we isolated human umbilical cord vein endothelial cells (HUVECs) and stably transfected with pcDNA3.1 carrying TSGA10 coding sequence. We demonstrated that TSGA10 over-expression significantly decreases HUVEC tubulogenesis and interconnected capillary network formation. HUVECs over-expressing TSGA10 exhibited a significant decrease in migration and proliferation rates. TSGA10 over-expression markedly decreased expression of angiogenesis-related genes, including VEGF-A, VEGFR-2, Ang-1, Ang-2, and Tie-2. Our ELISA results showed the decrease in VEGF-A mRNA expression level is associated with a significant decrease in its protein secretion. Additionally, over-expressing TSGA10 decreased expression levels of marker genes of cell migration (MMP-2, MMP-9, and SDF-1a) and proliferation (PCNA and Ki-67. Furthermore, ERK-1 and AKT phosphorylation significantly reduced in HUVECs over-expressing TSGA10. Our findings suggest a potent anti-angiogenesis activity of TSGA10 in HUVECs through down-regulation of ERK and AKT signalling pathways, and may provide therapeutic benefits for the management of different pathological angiogenesis.


Assuntos
Inibidores da Angiogênese/metabolismo , Movimento Celular , Proliferação de Células , Proteínas do Citoesqueleto/metabolismo , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Neovascularização Fisiológica , Inibidores da Angiogênese/genética , Proteínas do Citoesqueleto/genética , MAP Quinases Reguladas por Sinal Extracelular/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Metaloproteinases da Matriz/genética , Metaloproteinases da Matriz/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Transdução de Sinais , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA