Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Mater ; 12(9): 821-6, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23812129

RESUMO

The immense potential of colossal permittivity (CP) materials for use in modern microelectronics as well as for high-energy-density storage applications has propelled much recent research and development. Despite the discovery of several new classes of CP materials, the development of such materials with the required high performance is still a highly challenging task. Here, we propose a new electron-pinned, defect-dipole route to ideal CP behaviour, where hopping electrons are localized by designated lattice defect states to generate giant defect-dipoles and result in high-performance CP materials. We present a concrete example, (Nb+In) co-doped TiO2 rutile, that exhibits a largely temperature- and frequency-independent colossal permittivity (> 10(4)) as well as a low dielectric loss (mostly < 0.05) over a very broad temperature range from 80 to 450 K. A systematic defect analysis coupled with density functional theory modelling suggests that 'triangular' In2(3+)Vo(••)Ti(3+) and 'diamond' shaped Nb2(5+)Ti(3+)A(Ti) (A = Ti(3+)/In(3+)/Ti(4+)) defect complexes are strongly correlated, giving rise to large defect-dipole clusters containing highly localized electrons that are together responsible for the excellent CP properties observed in co-doped TiO2. This combined experimental and theoretical work opens up a promising feasible route to the systematic development of new high-performance CP materials via defect engineering.


Assuntos
Modelos Teóricos , Titânio , Condutividade Elétrica , Índio/química , Teste de Materiais , Temperatura , Difração de Raios X
2.
J Phys Chem Lett ; 8(14): 3249-3255, 2017 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-28661671

RESUMO

Ionic codoping offers a powerful approach for modifying material properties by extending the selection of potential dopant ions. However, it has been a major challenge to introduce certain ions that have hitherto proved difficult to use as dopants (called "difficult-dopants") into crystal structures at high concentrations, especially through wet chemical synthesis. Furthermore, the lack of a fundamental understanding of how codopants are incorporated into host materials, which types of defect structures they form in the equilibrium state, and what roles they play in material performance, has seriously hindered the rational design and development of promising codoped materials. Here we take In3+ (difficult-dopants) and Nb5+ (easy-dopants) codoped anatase TiO2 nanocrystals as an example and investigate the doping mechanism of these two different types of metal ions, the defect formation, and their associated impacts on high-pressure induced structural transition behaviors. It is experimentally demonstrated that the dual mechanisms of nucleation and diffusion doping are responsible for the synergic incorporation of these two dopants and theoretically evidenced that the defect structures created by the introduced In3+, Nb5+ codopants, their resultant Ti3+, and oxygen vacancies are locally composed of both defect clusters and equivalent defect pairs. These formed local defect structures then act as nucleation centers of baddeleyite- and α-PbO2-like metastable polymorphic phases and induce the abnormal trans-regime structural transition of codoped anatase TiO2 nanocrystals under high pressure. This work thus suggests an effective strategy to design and synthesize codoped nanocrystals with highly concentrated difficult-dopants. It also unveils the significance of local defect structures on material properties.

3.
Sci Rep ; 6: 23659, 2016 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-27025685

RESUMO

Electric-field-induced, antiferroelectric-ferroelectric (AFE-FE) phase transitions are common for AFE materials. To date, the strain and preferred orientation evolution as well as the role of the intermediate FE state during the successive AFE-FE-AFE phase transitions has not been clear. To this end, we have herein studied a typical AFE Pb0.97La0.02(Zr0.56Sn0.33Ti0.11)O3 (PLZST) material using in-situ neutron diffraction. It is striking that the AFE-FE phase transition is not fully reversible: in the electric-field-induced FE state, the induced strain exhibits an elliptical distribution, which in turn leads to significant preferred orientation in the final AFE state after withdrawal of the applied electric-field. The ω-dependent neutron diffraction patterns show clear evidence of the induced strain distribution and associated preferred orientation arising from the AFE-FE phase transition. The current work also provides an explanation for several temperature and electric-field dependent dielectric anomalies as well as unrecovered strain change which appear in AFE materials after exposure to sufficiently high electric fields.

4.
Inorg Chem ; 45(4): 1445-62, 2006 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-16471956

RESUMO

Reactions of the bis(bidentate) Schiff-bases N,N'-bis(6-alkyl-2-pyridylmethylene)ethane-1,2-diamine (where alkyl = H, Me, iPr) (L) with tetrakis(acetonitrile)copper(I) hexafluorophosphate and silver(I) hexafluorophosphate afforded, respectively, the double-stranded, dinuclear metal helicates [T-4-(R,R)]-(+/-)-[M2L2](PF6)2 (M = Cu, Ag). The helicates were characterized by 1H and 13C NMR spectroscopy, conductivity, microanalysis, and single-crystal X-ray structure determinations on selected compounds. Intermolecular ligand exchange and intramolecular inversion rates for the complexes were investigated by 1H NMR spectroscopy. Reversible intermolecular ligand exchange between two differently substituted helicates followed first-order kinetics. The rate constants (k) and corresponding half-lives (t(1/2)) for ligand exchange for the dicopper(I) helicates were k = (1.6-1.8) x 10(-6) s(-1) (t(1/2) = 110-120 h) in acetone-d6, k = 4.9 x 10(-6) s(-1) (t(1/2) = 40 h) in dichloromethane-d2, and k > 2 x 10(-3) s(-1) (t(1/2) < 5 min) in acetonitrile-d3. Ligand exchange for the disilver(I) helicates occurred with k > 2 x 10(-3) s(-1) (t(1/2) < 5 min). Racemization of the dicopper(I) helicate by an intramolecular mechanism was investigated by determination of the coalescence temperature for the diastereotopic isopropyl-Me groups in the appropriate complex, and DeltaG() >> 76 kJ mol(-1) was calculated for the process in acetone-d6, nitromethane-d3, and dichloromethane-d2 with DeltaG() = 75 kJ mol(-1) in acetonitrile-d3. Complete anion exchange of the hexafluorophosphate salt of a dicopper(I) helicate with the enantiomerically pure Delta-(-)-tris(catecholato)arsenate(V) ([As(cat)3]-) in the presence of Dabco gave the two diastereomers (R,R)-[Cu2L2][Delta-(-)-[As(cat)3]]2 and (S,S)-[Cu2L2][Delta-(-)-[As(cat)3]]2 in up to 54% diastereomeric excess, as determined by (1)H NMR spectroscopy. The diastereomerically and enantiomerically pure salt (R,R)-[Cu(2)L2][Delta-(-)-[As(cat)3]]2 crystallized from the solution in a typical second-order asymmetric transformation. The asymmetric transformation of the dicopper(I) helicate is the first synthesis of a diastereomerically and enantiomerically pure dicopper(I) helicate containing achiral ligands.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA