Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 132(1): 010801, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38242674

RESUMO

Quantum control is a ubiquitous research field that has enabled physicists to delve into the dynamics and features of quantum systems, delivering powerful applications for various atomic, optical, mechanical, and solid-state systems. In recent years, traditional control techniques based on optimization processes have been translated into efficient artificial intelligence algorithms. Here, we introduce a computational method for optimal quantum control problems via physics-informed neural networks (PINNs). We apply our methodology to open quantum systems by efficiently solving the state-to-state transfer problem with high probabilities, short-time evolution, and using low-energy consumption controls. Furthermore, we illustrate the flexibility of PINNs to solve the same problem under changes in physical parameters and initial conditions, showing advantages in comparison with standard control techniques.

2.
Nano Lett ; 21(16): 6960-6966, 2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34339601

RESUMO

Control over the charge states of color centers in solids is necessary to fully utilize them in quantum technologies. However, the microscopic charge dynamics of deep defects in wide-band-gap semiconductors are complex, and much remains unknown. We utilize a single-shot charge-state readout of an individual nitrogen-vacancy (NV) center to probe the charge dynamics of the surrounding defects in diamond. We show that the NV center charge state can be converted through the capture of holes produced by optical illumination of defects many micrometers away. With this method, we study the optical charge conversion of silicon-vacancy (SiV) centers and provide evidence that the dark state of the SiV center under optical illumination is SiV2-. These measurements illustrate that charge carrier generation, transport, and capture are important considerations in the design and implementation of quantum devices with color centers and provide a novel way to probe and control charge dynamics in diamond.


Assuntos
Diamante , Nitrogênio , Iluminação , Semicondutores , Silício
3.
J Phys Chem A ; 125(6): 1325-1335, 2021 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-33554602

RESUMO

A recent study associates carbon with single photon emitters (SPEs) in hexagonal boron nitride (h-BN). This observation, together with the high mobility of carbon in h-BN, suggests the existence of SPEs based on carbon clusters. Here, by means of density functional theory calculations, we studied clusters of substitutional carbon atoms up to tetramers in h-BN. Two different conformations of neutral carbon trimers have zero-point line energies and shifts of the phonon sideband compatible with typical photoluminescence spectra. Moreover, some conformations of two small C clusters next to each other result in photoluminescence spectra similar to those found in the experiments. We also showed that vacancies are unable to reproduce the typical features of the phonon sideband observed in most measurements because of the large spectral weight of low-energy breathing modes, ubiquitous in such defects.

4.
Phys Rev E ; 108(4-1): 044104, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37978653

RESUMO

Motile organisms can form stable agglomerates such as cities or colonies. In the outbreak of a highly contagious disease, the control of large-scale epidemic spread depends on factors like the number and size of agglomerates, travel rate between them, and disease recovery rate. While the emergence of agglomerates permits early interventions, it also explains longer real epidemics. In this work, we study the spread of susceptible-infected-recovered (SIR) epidemics (or any sort of information exchange by contact) in one-dimensional spatially structured systems. By working in one dimension, we establish a necessary foundation for future investigation in higher dimensions and mimic micro-organisms in narrow channels. We employ a model of self-propelled particles which spontaneously form multiple clusters. For a lower rate of stochastic reorientation, particles have a higher tendency to agglomerate and therefore the clusters become larger and less numerous. We examine the time evolution averaged over many epidemics and how it is affected by the existence of clusters through the eventual recovery of infected particles before reaching new clusters. New terms appear in the SIR differential equations in the last epidemic stages. We show how the final number of ever-infected individuals depends nontrivially on single-individual parameters. In particular, the number of ever-infected individuals first increases with the reorientation rate since particles escape sooner from clusters and spread the disease. For higher reorientation rate, travel between clusters becomes too diffusive and the clusters too small, decreasing the number of ever-infected individuals.


Assuntos
Epidemias , Humanos , Surtos de Doenças , Movimento Celular , Difusão
5.
Sci Rep ; 10(1): 20845, 2020 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-33257706

RESUMO

Together with the universally recognized SIR model, several approaches have been employed to understand the contagion dynamics of interacting particles. Here, Active Brownian particles (ABP) are introduced to model the contagion dynamics of living agents that perform a horizontal transmission of an infectious disease in space and time. By performing an ensemble average description of the ABP simulations, we statistically describe susceptible, infected, and recovered groups in terms of particle densities, activity, contagious rates, and random recovery times. Our results show that ABP reproduces the time dependence observed in traditional compartmental models such as the Susceptible-Infected-Recovery (SIR) models and allows us to explore the critical densities and the contagious radius that facilitates the virus spread. Furthermore, we derive a first-principles analytical expression for the contagion rate in terms of microscopic parameters, without considering free parameters as the classical SIR-based models. This approach offers a novel alternative to incorporate microscopic processes into analyzing SIR-based models with applications in a wide range of biological systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA