Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Microb Genom ; 10(8)2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39213169

RESUMO

Mycoplasma ovipneumoniae is associated with respiratory disease in wild and domestic Caprinae globally, with wide variation in disease outcomes within and between host species. To gain insight into phylogenetic structure and mechanisms of pathogenicity for this bacterial species, we compared M. ovipneumoniae genomes for 99 samples from 6 countries (Australia, Bosnia and Herzegovina, Brazil, China, France and USA) and 4 host species (domestic sheep, domestic goats, bighorn sheep and caribou). Core genome sequences of M. ovipneumoniae assemblies from domestic sheep and goats fell into two well-supported phylogenetic clades that are divergent enough to be considered different bacterial species, consistent with each of these two clades having an evolutionary origin in separate host species. Genome assemblies from bighorn sheep and caribou also fell within these two clades, indicating multiple spillover events, most commonly from domestic sheep. Pangenome analysis indicated a high percentage (91.4 %) of accessory genes (i.e. genes found only in a subset of assemblies) compared to core genes (i.e. genes found in all assemblies), potentially indicating a propensity for this pathogen to adapt to within-host conditions. In addition, many genes related to carbon metabolism, which is a virulence factor for Mycoplasmas, showed evidence for homologous recombination, a potential signature of adaptation. The presence or absence of annotated genes was very similar between sheep and goat clades, with only two annotated genes significantly clade-associated. However, three M. ovipneumoniae genome assemblies from asymptomatic caribou in Alaska formed a highly divergent subclade within the sheep clade that lacked 23 annotated genes compared to other assemblies, and many of these genes had functions related to carbon metabolism. Overall, our results suggest that adaptation of M. ovipneumoniae has involved evolution of carbon metabolism pathways and virulence mechanisms related to those pathways. The genes involved in these pathways, along with other genes identified as potentially involved in virulence in this study, are potential targets for future investigation into a possible genomic basis for the high variation observed in disease outcomes within and between wild and domestic host species.


Assuntos
Genoma Bacteriano , Cabras , Mycoplasma ovipneumoniae , Filogenia , Animais , Mycoplasma ovipneumoniae/genética , Cabras/microbiologia , Ovinos/microbiologia , Genômica , Rena/microbiologia , China , Doenças dos Ovinos/microbiologia , Adaptação Fisiológica/genética , Austrália , Pneumonia por Mycoplasma/microbiologia , Pneumonia por Mycoplasma/veterinária
2.
J Wildl Dis ; 59(4): 702-708, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37768779

RESUMO

Disease surveillance testing for emerging zoonotic pathogens in wildlife is a key component in understanding the epidemiology of these agents and potential risk to human populations. Recent emergence of SARS-CoV-2 in humans, and subsequent detection of this virus in wildlife, highlights the need for developing new One Health surveillance strategies. We used lymph node exudate, a sample type that is routinely collected in hunter-harvested white-tailed deer (WTD, Odocoileus virginianus) for surveillance of chronic wasting disease, to assess anti-SARS-CoV-2 neutralizing antibodies. A total of 132 pairs of retropharyngeal lymph nodes collected from Nebraska WTD harvested in Nebraska, US, in 2019 (pre-SARS-CoV-2 pandemic) and 2021 (post-SARS-CoV-2 pandemic) were tested for SARS-CoV-2 with reverse transcription PCR. Thereafter, exudates obtained from these same lymph nodes were tested for SARS-CoV-2 neutralizing antibodies using a surrogate virus neutralization test. Neutralizing antibodies were detected in the exudates with high diagnostic specificity (100% at proposed cutoff of 40% inhibition). Application of this testing approach to samples collected for use in other disease surveillance activities may provide additional epidemiological data on SARS-CoV-2 exposure, and there is further potential to apply this sample type to detection of other pathogens of interest.


Assuntos
COVID-19 , Cervos , Animais , Humanos , SARS-CoV-2 , Nebraska/epidemiologia , COVID-19/epidemiologia , COVID-19/patologia , COVID-19/veterinária , Espectroscopia de Ressonância de Spin Eletrônica/veterinária , Animais Selvagens , Linfonodos/patologia , Anticorpos Antivirais , Anticorpos Neutralizantes
3.
J Wildl Dis ; 59(1): 37-48, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36648765

RESUMO

Low lamb recruitment can be an obstacle to bighorn sheep (Ovis canadensis) conservation and restoration. Causes of abortion and neonate loss in bighorn sheep, which may affect recruitment, are poorly understood. Toxoplasma gondii is a major cause of abortion and stillbirth in domestic small ruminants worldwide, but no reports exist documenting abortion or neonatal death in bighorn sheep attributable to toxoplasmosis. Between March 2019 and May 2021, eight fetal and neonatal bighorn lamb cadavers from four western US states (Idaho, Montana, Nebraska, and Washington) were submitted to the Washington Animal Disease Diagnostic Laboratory for postmortem examination, histologic examination, and ancillary testing to determine the cause of abortion or neonatal death. Necrotizing encephalitis characteristic of toxoplasmosis was identified histologically in six of eight cases, and T. gondii infection was confirmed by PCR in five cases with characteristic lesions. Other lesions attributable to toxoplasmosis were pneumonia (3/5 cases) and myocarditis (2/5 cases). Protozoal cysts were identified histologically within brain, lung, heart, skeletal muscle, adipose tissue, or a combination of samples in all five sheep with PCR-confirmed T. gondii infections. Seroprevalence of T. gondii ranged from 40-81% of adult females sampled in the Washington population in October and November 2018-2021, confirming high rates of exposure before detection of Toxoplasma abortions in this study. Of 1,149 bighorn sheep postmortem samples submitted to Washington Animal Disease Diagnostic Laboratory between January 2000 and May 2021, 21 of which were from fetuses or neonates, a single case of chronic toxoplasmosis was diagnosed in one adult ewe. Recent identification of Toxoplasma abortions in bighorn sheep suggests that toxoplasmosis is an underappreciated cause of reproductive loss. Abortions and neonatal mortalities should be investigated through postmortem and histologic examination, particularly in herds that are chronically small, demographically stagnant, or exhibit reproductive rates lower than expected.


Assuntos
Doenças dos Ovinos , Carneiro da Montanha , Toxoplasma , Toxoplasmose Animal , Animais , Feminino , Gravidez , Estudos Soroepidemiológicos , Ovinos , Doenças dos Ovinos/diagnóstico , Doenças dos Ovinos/mortalidade , Doenças dos Ovinos/parasitologia , Toxoplasma/isolamento & purificação , Toxoplasmose Animal/diagnóstico , Toxoplasmose Animal/epidemiologia , Aborto Animal/epidemiologia , Aborto Animal/microbiologia , Conservação dos Recursos Naturais , Animais Recém-Nascidos/parasitologia
4.
J Wildl Dis ; 57(4): 831-843, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34648639

RESUMO

We analyzed retrospective data on harvest management practices and corresponding chronic wasting disease (CWD) prevalence trends in 36 western US and Canadian mule deer (Odocoileus hemionus) management units (units). Our analyses employed logistic regression and model selection, exploiting variation in practices within and among jurisdictions to examine relationships between harvest management and apparent prevalence (the proportion of positive animals among those sampled). Despite notable differences in hunting practices among jurisdictions, our meta-analysis of combined data revealed strong evidence that the amount of harvest was related to CWD prevalence trends among adult male mule deer in the 32 units where prevalence at the start of the analysis period was ≤5%. All competitive models included the number of male deer harvested or number of hunters 1-2 yr prior as an explanatory variable, with increasing harvest leading to lower prevalence among males harvested in the following year. Competitive models also included harvest timing. Although less definitive than the number harvested, median harvest dates falling closer to breeding seasons were associated with lower prevalence in the following year. Our findings suggest harvest-when sufficient and sustained-can be an effective tool for attenuating CWD prevalence in adult male mule deer across western ranges, especially early in the course of an epidemic. Evidence of a broad relationship between the amount of harvest and subsequent changes in CWD prevalence among adult male mule deer provides an empirical basis for undertaking adaptive disease management experimentation aimed at suppressing or curtailing CWD epidemics.


Assuntos
Cervos , Doença de Emaciação Crônica , Animais , Canadá , Espectroscopia de Ressonância de Spin Eletrônica/veterinária , Equidae , Masculino , Prevalência , Estudos Retrospectivos , Doença de Emaciação Crônica/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA