Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Anal Chem ; 93(28): 9711-9718, 2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-34190551

RESUMO

Fourier transform infrared spectroscopy (FTIR) is a ubiquitous spectroscopic technique. Spectral interpretation is a time-consuming process, but it yields important information about functional groups present in compounds and in complex substances. We develop a generalizable model via a machine learning (ML) algorithm using convolutional neural networks (CNNs) to identify the presence of functional groups in gas-phase FTIR spectra. The ML models reduce the amount of time required to analyze functional groups and facilitate interpretation of FTIR spectra. Through web scraping, we acquire intensity-frequency data from 8728 gas-phase organic molecules within the NIST spectral database and transform the data into spectral images. We successfully train models for 15 of the most common organic functional groups, which we then determine via identification from previously untrained spectra. These models serve to expand the application of FTIR measurements for facile analysis of organic samples. Our approach was done such that we have broad functional group models that infer in tandem to provide full interpretation of a spectrum. We present the first implementation of ML using image-based CNNs for predicting functional groups from a spectroscopic method.


Assuntos
Aprendizado de Máquina , Identificação Social , Algoritmos , Redes Neurais de Computação , Espectroscopia de Infravermelho com Transformada de Fourier
2.
ACS Omega ; 8(27): 24341-24350, 2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37457446

RESUMO

Mass spectrometry is a ubiquitous technique capable of complex chemical analysis. The fragmentation patterns that appear in mass spectrometry are an excellent target for artificial intelligence methods to automate and expedite the analysis of data to identify targets such as functional groups. To develop this approach, we trained models on electron ionization (a reproducible hard fragmentation technique) mass spectra so that not only the final model accuracies but also the reasoning behind model assignments could be evaluated. The convolutional neural network (CNN) models were trained on 2D images of the spectra using transfer learning of Inception V3, and the logistic regression models were trained using array-based data and Scikit Learn implementation in Python. Our training dataset consisted of 21,166 mass spectra from the United States' National Institute of Standards and Technology (NIST) Webbook. The data was used to train models to identify functional groups, both specific (e.g., amines, esters) and generalized classifications (aromatics, oxygen-containing functional groups, and nitrogen-containing functional groups). We found that the highest final accuracies on identifying new data were observed using logistic regression rather than transfer learning on CNN models. It was also determined that the mass range most beneficial for functional group analysis is 0-100 m/z. We also found success in correctly identifying functional groups of example molecules selected from both the NIST database and experimental data. Beyond functional group analysis, we also have developed a methodology to identify impactful fragments for the accurate detection of the models' targets. The results demonstrate a potential pathway for analyzing and screening substantial amounts of mass spectral data.

3.
J Phys Chem B ; 127(7): 1618-1627, 2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36757371

RESUMO

This work summarizes a theoretical analysis of the perturbation on Raman spectra in aqueous NaCl and KCl solutions with the aim to detect ion pairs. The experimental Raman spectra, both polarized and depolarized, are perturbed by these ions to a comparable extent or somewhat less by KCl than NaCl. This result appears to be contrary to the molecular dynamics (MD) simulation showing that the isolated and separated ions of KCl should have a larger perturbation than NaCl, as the solvation shell of K+ is larger than that of Na+. The apparent discrepancy signifies the ion pair formation which is more substantial for KCl than NaCl. The MD simulations and quantum chemical calculations revealed that KCl forms ion pairs more than NaCl and that the ion pair formation reduces the perturbation on the Raman spectra more for KCl. The present analysis shows that the perturbed Raman spectra provide a useful sign to evaluate the ion pair formation in aqueous solutions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA