Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
RSC Adv ; 9(52): 30052-30063, 2019 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-35530251

RESUMO

Sorption properties of polydopamine (PDA) for uranium and plutonium from an aqueous environment are reported at three different pH values (2, 4 and 6.5-7). In addition to deionized (DI) water, artificial groundwater (GW) and seawater (SW) were used with U uptake close to 100% in each case. PDA polymer has been identified as a material with extremely high sorption capacity Q max ∼500 mg g-1 of the polymer at pH 6.5 and high selectivity for uranium. Similar high sorption properties are revealed for plutonium uptake. PDA-uranyl and PDA-plutonium interactions responsible for the observed adsorption processes have been addressed with a set of experimental techniques including FTIR spectroscopy, electron microscopy and cyclic voltammetry.

2.
J Phys Chem B ; 119(15): 5055-61, 2015 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-25825795

RESUMO

We demonstrate applicability of the open-circuit potential (OCP) method for kinetic analysis of the oxidative chemical polymerization of aniline both in clear solution and in dispersions of multiwalled carbon nanotubes (MWCNT). The characteristic points and the shape of the OCP profile are used to estimate the kinetic parameters of the main stages of the known two-step polymerization mechanism of aniline. We have found that the reciprocal values of the duration of the main polymerization stages namely the induction period, pernigraniline (PN) accumulation and reduction of PN with residual aniline are the linear functions of the weight fraction of MWCNT. To compare the kinetic data of the proposed OCP and known approaches the last two stages have been considered as a single heterogeneous stage of emeraldine (EM) formation. The kEM rate constant calculated by the OCP profiles for this EM stage in the solution and dispersion media is in a very good agreement with the known k2 values.

3.
J Phys Chem B ; 117(17): 5306-14, 2013 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-23534341

RESUMO

In this work we find that polyaniline (PANI), synthesized by aniline chemical polymerization at a surface of template polycarbonate (PC) particles, is significantly different in molecular weight, structural order, oxidation state, and conductivity from a neat PANI. Molecular weight of the PANI phase in the composite (Mw = 158,000) is 1.6 times higher than that of the neat PANI synthesized in the absence of the template particles. Moreover, XRD analysis shows that crystallinity of the PANI phase in the composite is three times higher than that of the neat PANI. Raman spectroscopy indicates that the oxidation level of PANI in the PC/PANI composite is lower than that of the neat PANI. These noticeable changes of the PANI phase properties suggest specific interactions of reagents in the polymerization medium and formed PANI with the template phase as well as an orientation effect of the latter surface. FTIR spectroscopy reveals that hydrogen bonding in the neat doped PANI is weaker than one between -NH- of PANI and C═O of PC at their interface. The discovered differences are supported by the fact that conductivity of the PANI phase in the composite is more than three times higher than that of the neat PANI.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA