Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Curr Genet ; 65(2): 523-538, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30324432

RESUMO

The acetyltransferase GcnE is part of the SAGA complex which regulates fungal gene expression through acetylation of chromatin. Target genes of the histone acetyltransferase GcnE include those involved in secondary metabolism and asexual development. Here, we show that the absence of GcnE not only abrogated conidiation, but also strongly impeded vegetative growth of hyphae in the human pathogenic fungus Aspergillus fumigatus. A yeast two-hybrid screen using a Saccharomyces cerevisiae strain whose tRNA molecules were specifically adapted to express A. fumigatus proteins identified two unprecedented proteins that directly interact with GcnE. Glutamine synthetase GlnA as well as a hypothetical protein located on chromosome 8 (GbpA) were identified as binding partners of GcnE and their interaction was confirmed in vivo via bimolecular fluorescence complementation. Phenotypic characterization of gbpA and glnA deletion mutants revealed a role for GbpA during conidiogenesis and confirmed the central role of GlnA in glutamine biosynthesis. The increase of glutamine synthetase activity in the absence of GcnE indicated that GcnE silences GlnA through binding. This finding suggests an expansion of the regulatory role of GcnE in A. fumigatus.


Assuntos
Aspergillus fumigatus/genética , Aspergillus fumigatus/metabolismo , Expressão Gênica , Glutamina/biossíntese , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo , Técnicas do Sistema de Duplo-Híbrido , Aspergillus fumigatus/crescimento & desenvolvimento , Cromatografia Líquida , Clonagem Molecular , Deleção de Genes , Regulação Fúngica da Expressão Gênica , Biblioteca Gênica , Genes Fúngicos , Teste de Complementação Genética , Genótipo , Espectrometria de Massas , Microscopia de Fluorescência , Fenótipo , Mapeamento de Interação de Proteínas , Esporos Fúngicos
2.
Curr Genet ; 64(3): 589-598, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29098364

RESUMO

The tRNA population reflects the codon bias of the organism and affects the translation of heterologous target mRNA molecules. In this study, Saccharomyces cerevisiae strains with modified levels of rare tRNA were engineered, that allowed efficient generation of recombinant proteins with unfavorable codon usage. We established a novel synthetic tRNA expression cassette and verified functional nonsense suppressor tRNAGlnSCUA generation in a stop codon read-through assay with a modified ß-galactosidase reporter gene. Correlation between altered tRNA and protein level was shown by survival of copper sensitive S. cerevisiae cells in the presence of copper ions by an increased transcription of tRNAArgCCG molecules, recognizing rare codons in a modified CUP1 gene. Genome integration of tRNA expression cassette led to the generation of arginine-tRNA-adapted S. cerevisiae strains, which showed elevated tRNA levels (tRNAArgCCG, tRNAArgGCG and tRNAArgUCG) pairing to rare codons. The modified strain MNY3 revealed a considerably improved monitoring of protein-protein interaction from Aspergillus fumigatus bait and prey sequences in yeast two-hybrid experiments. In future, this principle to overcome limited recombinant protein expression by tRNA adaption of expression strains instead of codon adaption might provide new designer yeast cells for an efficient protein production and for improved genome-wide protein-protein interaction analyses.


Assuntos
RNA de Transferência de Arginina/genética , Saccharomyces cerevisiae/genética , Aspergillus fumigatus/genética , Códon , Códon de Terminação , Genes Fúngicos , RNA Fúngico/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Técnicas do Sistema de Duplo-Híbrido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA