RESUMO
Environmental enrichment (EE) is a paradigm that offers the animal a plethora of stimuli, including physical, cognitive, sensory, and social enrichment. Exposure to EE can modulate both anxiety responses and plasma corticosterone. In this study, our objective was to explore how chronic unpredictable stress (CUS) impacts anxiety-related behaviors in male Swiss mice raised in EE conditions. Additionally, we investigated corticosterone and adrenocorticotropic hormone (ACTH) levels to assess the involvement of the hypothalamic-pituitary-adrenal (HPA) axis in mediating these responses. Mice were housed under either EE or standard housing conditions for 21 days. Afterward, they were exposed to 11 days of CUS while still reared in their distinct housing conditions, with half of the mice receiving daily pretreatment with the vehicle and the other half receiving daily metyrapone (MET) injections, an inhibitor of steroid synthesis, 30 mins before CUS exposure. Blood samples were obtained to assess plasma corticosterone and ACTH levels. The 11-day CUS protocol induced anxiety-like phenotype and elevated ACTH levels in EE mice. Chronic MET pretreatment prevented anxiety-like behavior in the EE-CUS groups, by mechanisms involving increased plasma corticosterone levels and decreased ACTH. These results suggest a role of the HPA axis in the mechanism underlying the anxiogenic phenotype induced by CUS in EE mice and shed light on the complex interplay between environmental factors, stress, and the HPA axis in anxiety regulation.
Assuntos
Hormônio Adrenocorticotrópico , Ansiedade , Corticosterona , Meio Ambiente , Sistema Hipotálamo-Hipofisário , Sistema Hipófise-Suprarrenal , Estresse Psicológico , Animais , Masculino , Sistema Hipotálamo-Hipofisário/metabolismo , Camundongos , Sistema Hipófise-Suprarrenal/metabolismo , Estresse Psicológico/metabolismo , Hormônio Adrenocorticotrópico/sangue , Corticosterona/sangue , Metirapona/farmacologia , Comportamento Animal/fisiologia , Abrigo para Animais , Aprendizagem em Labirinto/fisiologiaRESUMO
It is more than recognized and accepted that the environment affects the physiological responses of all living things, from bacteria to superior vertebrates, constituting an important factor in the evolution of all species. Environmental influences range from natural processes such as sunlight, seasons of the year, and rest to complex processes like stress and other mood disorders, infections, and air pollution, being all of them influenced by how each creature deals with them. In this chapter, it will be discussed how some of the environmental elements affect directly or indirectly neuropathic pain, a type of chronic pain caused by a lesion or disease of the somatosensory nervous system. For that, it was considered the edge of knowledge in translational research, thus including data from human and experimental animals as well as the applicability of such findings.
Assuntos
Poluição do Ar , Dor Crônica , Neuralgia , Humanos , Animais , Dor Crônica/complicações , Neuralgia/etiologia , Estações do AnoRESUMO
It has been 70 years since Barbara McClintock discovered transposable elements (TE), and the mechanistic studies and functional applications of transposable elements have been at the forefront of life science research. As an essential part of the genome, TEs have been discovered in most species of prokaryotes and eukaryotes, and the relative proportion of the total genetic sequence they comprise gradually increases with the expansion of the genome. In humans, TEs account for about 40% of the genome and are deeply involved in gene regulation, chromosome structure maintenance, inflammatory response, and the etiology of genetic and non-genetic diseases. In-depth functional studies of TEs in mammalian cells and the human body have led to a greater understanding of these fundamental biological processes. At the same time, as a potent mutagen and efficient genome editing tool, TEs have been transformed into biological tools critical for developing new techniques. By controlling the random insertion of TEs into the genome to change the phenotype in cells and model organisms, critical proteins of many diseases have been systematically identified. Exploiting the TE's highly efficient in vitro insertion activity has driven the development of cutting-edge sequencing technologies. Recently, a new technology combining CRISPR with TEs was reported, which provides a novel targeted insertion system to both academia and industry. We suggest that interrogating biological processes that generally depend on the actions of TEs with TEs-derived genetic tools is a very efficient strategy. For example, excessive activation of TEs is an essential factor in the occurrence of cancer in humans. As potent mutagens, TEs have also been used to unravel the key regulatory elements and mechanisms of carcinogenesis. Through this review, we aim to effectively combine the traditional views of TEs with recent research progress, systematically link the mechanistic discoveries of TEs with the technological developments of TE-based tools, and provide a comprehensive approach and understanding for researchers in different fields.
RESUMO
Studies investigated how stressful experiences modulate physiological and behavioral responses and the consequences of stress-induced corticosterone release in anxiety-like behavior. Adolescence is crucial to brain maturation, and several neurobiological changes in this period lead individuals to increased susceptibility or resilience to aversive situations. Despite the effects of stress in adults, information about adolescents' responses to acute stress is lacking. We aimed to understand how adolescence affects acute stress responses. Male adolescent rats (30 days old) were 2 h restrained, and anxiety-like behaviors were measured immediately or 10 days after stress in the elevated plus-maze (EPM) and the light-dark box (LDB) tests. To verify the importance of CORT modulation in stress-induced anxiety, another group of rats was treated, 30 min before restraint, with metyrapone to blunt the stress-induced CORT peak and tested immediately after stress. To show that stress effects on behavior were age-dependent, another set of rats was tested in two different periods - early adolescence (30 days old) and mid-adolescence (40 days old) and were treated or not with metyrapone before the stress session and tested immediately or ten days later in the LDB test. Only early adolescent male rats were resilient to delayed anxiety-like behavior in EPM and LDB tests. Metyrapone treatment increased the rats' exploration immediately and ten days after stress. These data suggest a specific age at which adolescent rats are resilient to the delayed effects of acute restraint stress and that the metyrapone treatment has long-term behavioral consequences.
Assuntos
Glucocorticoides , Metirapona , Ratos , Animais , Masculino , Glucocorticoides/farmacologia , Metirapona/farmacologia , Ansiedade/induzido quimicamente , Transtornos de Ansiedade , Corticosterona/farmacologia , Estresse Psicológico/complicações , Comportamento AnimalRESUMO
BACKGROUND: Knowledge on the neurobiological systems underlying psychiatric disorders has considerably evolved due to findings on basic research using animal models. Anxiety-like behaviors in rodents are widely explored in neuroethological apparatuses, such as the light-dark box (LDB) test through different protocols, which have been shown to influence the behavioral outcomes and probably the activation of the hypothalamic-pituitary-adrenal (HPA) axis. NEW METHOD: Adult male Wistar rats were submitted to LDB in different room illumination conditions (25/0, 65/0 and/or 330/0 lux), initial positioning in the LDB compartments and previous stressful experience in the Elevated Plus Maze (EPM) or restraint stress (RS). Rats' behavior (exploratory and risk assessment) was registered during a 15 min period, divided into blocks of 5 min RESULTS: Exploration of the lit compartment decreased in higher luminosity condition, as after positioning rats in the dark compartment or previous exposure to the EPM, while low luminosity increased exploration of the LDB. No differences were observed on serum corticosterone in all groups and experimental conditions. COMPARISON WITH EXISTING METHODS: Light intensity and test duration influenced exploration of the LDB jeopardizing the anxiolytic/anxiogenic effects. Low light intensity increased exploration, while high intensity decreased it. These results suggest that 65/0 lux is a neutral condition to investigate possible anxiolytic/anxiogenic effects of drugs and/or exposure to previous aversive stimuli as the EPM. CONCLUSIONS: Different factors impact on exploratory and risk assessment behaviors which may be related to safety maximization behavior. Unraveling how different factors affect behavior may be a crucial step towards understanding its expression and the contributions on advances in the physiopathology 1 and treatment of psychiatric disorders.
Assuntos
Ansiolíticos , Ratos , Animais , Masculino , Ansiolíticos/farmacologia , Ratos Wistar , Comportamento Animal/fisiologia , Ansiedade/tratamento farmacológico , CorticosteronaRESUMO
Background and Aim: Cortisol binds to mineralocorticoid receptor (MR) and glucocorticoid receptor (GR) found in the hippocampus. The balanced expression of these receptors is essential to neuronal survival as MR and GR activations have antiapoptotic and proapoptotic effects, respectively. Given the aging changes in dogs' dentate gyrus (DG) and the possible involvement of cortisol receptors in this process, this study aimed to evaluate the expression of MR and GR and neuronal degeneration in this hippocampal region of aged dogs. Materials and Methods: This study included cadaveric histologic hippocampus sections from six dogs aged 10 years and older (AG group) and 12 young/adult dogs aged up to 8 years (YAd group). Nissl staining and immunohistochemistry were performed to identify cells and investigate MR and GR expression, respectively. Furthermore, fluorescent labeling (fluoro-Jade B) was used to detect degenerating neurons. Results: The AG group's polymorphic layer of the DG had a lower cell count (16%) and more degenerating neurons than the YAd group. In addition to these cellular changes, the AG group had lower MR immunoreactivity and MR-to-GR ratio. Furthermore, the lowest MR expression was associated with neuronal degeneration in the polymorphic layer of the DG of dogs. Conclusion: An imbalance in the MR-to-GR ratio was observed in the polymorphic layer of the DG of aged dogs, along with lower MR expression and a greater number of degenerating neurons. These findings have clinical implications for understanding the decline in hippocampal memory formation associated with cognitive changes in aged dogs.
RESUMO
Previous studies have suggested that the basolateral amygdala (BLA) and the ventral hippocampus (VH) are critical sites for predator-related fear memory. Predator exposure is an intense emotional experience and should increase plasmatic corticosterone likely to modulate the emotion-related memories. However, it is unclear whether the BLA and VH harbor plastic events underlying predator-related fear memory storage and how molecular and endocrine mechanisms interact to modulate memory to the predatory threat. Here, we first examined the effects of protein synthesis inhibition in the BLA and VH on fear memory to a predatory threat. We next evaluated how exposure to a predatory threat impacts the corticosterone release and how the inhibition of corticosterone synthesis can influence predator-related fear memory. Finally, we examined how predator exposure triggers the activation of glucocorticoid and mineralocorticoid receptors in the BLA and VH and whether the GR antagonist injection affects predator-related fear memory. We showed that predator-related contextual fear is dependent on protein synthesis in the BLA and VH. Moreover, we described the impact of rapid glucocorticoid release during predatory exposure on the formation of contextual fear responses and that GR-induced signaling facilitates memory consolidation within the BLA and VH. The results are relevant in understanding how life-threatening situations such as a predator encounter impact fear memory storage and open exciting perspectives to investigate GR-induced proteins as targets to deciphering and manipulating aversive memories.
Assuntos
Complexo Nuclear Basolateral da Amígdala , Complexo Nuclear Basolateral da Amígdala/metabolismo , Corticosterona/metabolismo , Medo/fisiologia , Glucocorticoides/metabolismo , Glucocorticoides/farmacologia , Hipocampo/metabolismo , Receptores de Glucocorticoides/metabolismoRESUMO
The persistence of anxiety and the deficit of fear memory extinction are both phenomena related to the symptoms of a trauma-related disorder, such as post-traumatic stress disorder (PTSD). Recently we have shown that single acute restraint stress (2 h) in rats induces a late anxiety-related behavior (observed ten days after stress), whereas, in the present work, we found that the same stress impaired fear extinction in animals conditioned ten days after stress. Fourteen days of environmental enrichment (EE) prevented the deleterious effect of stress on fear memory extinction. Additionally, we observed that EE prevented the stress-induced increase in AMPA receptor GluA1 subunit phosphorylation in the hippocampus, but not in the basolateral amygdala complex and the frontal cortex, indicating a potential mechanism by which it exerts its protective effect against the stress-induced behavioral outcome.
Assuntos
Medo , Transtornos de Estresse Pós-Traumáticos , Animais , Extinção Psicológica , Hipocampo , Fosforilação , Ratos , Estresse Psicológico , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol PropiônicoRESUMO
It is more than recognized and accepted that the environment affects the physiological responses of all living things, from bacteria to superior vertebrates, constituting an important factor in the evolution of all species. Environmental influences range from natural processes such as sunlight, seasons of the year, and rest to complex processes like stress and other mood disorders, infections, and air pollution, being all of them influenced by how each creature deals with them. In this chapter, it will be discussed how some of the environmental elements affect directly or indirectly neuropathic pain, a type of chronic pain caused by a lesion or disease of the somatosensory nervous system. For that, it was considered the edge of knowledge in translational research, thus including data from human and experimental animals as well as the applicability of such findings.
RESUMO
Previous studies showed that acute restraint stress or transient elevation of glucocorticoid (GC) stress hormones produces emergent changes in both anxiety behavior and dendritic branches in the basolateral amygdala complex (BLA) of rats. In this work, we demonstrate that exposure to environmental enrichment (EE) prevented stress-induced increases in anxiety (emerging 10 days post-stress) in adult rats without blocking stress-induced dendritic branch remodeling in the BLA nor stress-induced enhancement of GC serum levels.
Assuntos
Plasticidade Neuronal/fisiologia , Estimulação Física/métodos , Estresse Psicológico/fisiopatologia , Tonsila do Cerebelo , Animais , Ansiedade/fisiopatologia , Transtornos de Ansiedade , Complexo Nuclear Basolateral da Amígdala/fisiologia , Dendritos , Meio Ambiente , Masculino , Ratos , Ratos Wistar , Restrição Física/psicologiaRESUMO
Chronic psychogenic stress can increase neuronal calcium influx and generate the intracellular accumulation of oxidative (ROS) and nitrosative (RNS) reactive species, disrupting synaptic transmission in the brain. These molecules impair the Na,K-ATPase (NKA) activity, whose malfunction has been related to neuropsychiatric disorders, including anxiety, depression, schizophrenia, and neurodegenerative diseases. In this study, we assessed how 14â¯days of restraint stress in rats affect NKA activity via oxidative/nitrosative damage in the frontal cortex (FCx), a crucial region for emotional and cognitive control. One day after the last stress session (S14â¯+â¯1d), but not immediately after the last stress session (S14), α2,3-NKA activity was significantly reduced in the FCx, without changes in the protein levels. The S14â¯+â¯1d animals also showed increased lipid peroxidation, iNOS, and AP-1 activities, as well as TNF-α protein levels, evidencing oxidative stress and neuroinflammation. No cellular death or neurodegeneration was observed in the FCx of S14â¯+â¯1d animals. Pharmacological inhibition of iNOS or COX-2 before each stress session prevented lipid peroxidation and the α2,3-NKA activity loss. Our results show that repeated restraint exposure for 14â¯days decreases the activity of α2,3-NKA in FCx 24â¯h after the last stress, an effect associated with augmented inflammatory response and oxidative and nitrosative damage and suggest new pathophysiological roles to neuroinflammation in neuropsychiatric diseases.