Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Rapid Commun Mass Spectrom ; 38(15): e9777, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38797962

RESUMO

RATIONALE: This study has developed a data processing protocol based on mass defect analysis for the automatic construction of unique peak lists addressing the need for the fast and efficient treatment of databases of mass spectra with limited mass resolution. METHODS: The data processing protocol, implemented in MATLAB, is tested on a database of 126 mass spectra obtained from time-of-flight secondary ion mass spectrometry analysis of the exhaust of a laboratory diesel miniCAST burner deposited on Ti substrates. RESULTS: The data processing protocol converts the mass spectra into a data matrix suitable for chemometrics (peak list) by combining mass defect analysis and multivariate analysis. In particular, the role of the mass defect analysis is expanded to improve mass calibration and automate the construction of the peak list. CONCLUSIONS: In this context, mass defect analysis becomes an invaluable technique for the efficient processing of databases of mass spectra with limited mass resolution by allowing the fast and automated construction of a peak list common to all mass spectra, by improving the mass calibration, and finally by reducing the number of molecular formulae consistent with a given accurate mass, thus facilitating the identification of unknown ions.

2.
Nanotechnology ; 34(3)2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36228546

RESUMO

2D boron nitride (2D-BN) was synthesized by gas-source molecular beam epitaxy on polycrystalline and monocrystalline Ni substrates using gaseous borazine and active nitrogen generated by a remote plasma source. The excess of nitrogen atoms allows to overcome the thickness self-limitation active on Ni when using borazine alone. The nucleation density and the shape of the 2D-BN domains are clearly related to the Ni substrate preparation and to the growth parameters. Based on spatially-resolved photoemission spectroscopy and on the detection of the π plasmon peak, we discuss the origin of the N1s and B1s components and their relationship with an electronic coupling at the interface. After optimization of the growth parameters, a full 2D-BN coverage is obtained, although the material thickness is not evenly distributed. The 2D-BN presents a granular structure on (111) oriented Ni grains, showing a rather poor cristallographic quality. On the contrary, high quality 2D-BN is found on (101) and (001) Ni grains, where triangular islands are observed whose lateral size is limited to ∼20µm.

3.
Molecules ; 27(9)2022 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-35566301

RESUMO

The mechanical and physical properties of zirconium carbide (ZrC) are limited to its ability to deteriorate in oxidizing environments. Low refractory oxides are typically formed as layers on ZrC surfaces when exposed to the slightest concentrations of oxygen. However, this carbide has a wide range of applications in nuclear reactor lines and nozzle flaps in the aerospace industry, just to name a few. To develop mechanically strong and oxygen-resistant ZrC materials, the need for studying and characterizing the oxidized layers, with emphasis on the interfacial structure between ZrC and the oxidized phases, cannot be understated. In this paper, the ZrC(111)//c-ZrO2 (111) interface was studied by both finite temperature molecular dynamic simulation and DFT. The interfacial mechanical properties were characterized by the work of adhesion which revealed a Zr|OO|Zr|OO//ZrC(111) interface model as the most stable with an oxygen layer from ZrO2 being deposited on the ZrC(111) surface. Further structural analysis at the interface showed a crack in the first ZrO2 layer at the interfacial region. Investigations of the electronic structure using the density of state calculations and Bader charge analysis revealed the interfacial properties as local effects with no significant impacts in the bulk regions of the interface slab.

4.
Angew Chem Int Ed Engl ; 58(29): 9933-9938, 2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-31087744

RESUMO

Diamondoids, sp3 -hybridized nanometer-sized diamond-like hydrocarbons (nanodiamonds), difunctionalized with hydroxy and primary phosphine oxide groups, enable the assembly of the first sp3 -C-based chemical sensors by vapor deposition. Both pristine nanodiamonds and palladium nanolayered composites can be used to detect toxic NO2 and NH3 gases. This carbon-based gas sensor technology allows reversible NO2 detection down to 50 ppb and NH3 detection at 25-100 ppm concentration with fast response and recovery processes at 100 °C. Reversible gas adsorption and detection is compatible with 50 % humidity conditions. Semiconducting p-type sensing properties are achieved from devices based on primary phosphine-diamantanol, in which high specific area (ca. 140 m2 g-1 ) and channel nanoporosity derive from H-bonding.

5.
Rapid Commun Mass Spectrom ; 32(13): 1015-1025, 2018 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-29603796

RESUMO

RATIONALE: Time-of-flight secondary ion mass spectrometry (TOF-SIMS) is used to provide detailed information on the surface chemical composition of soot. An analytical protocol is proposed and tested on a laboratory flame, and the results are compared with our previous measurements provided by two-step laser mass spectrometry (L2MS). METHODS: This work details: (1) the development of a dedicated apparatus to sample combustion products from atmospheric flames and deposit them on substrates suitable for TOF-SIMS analysis; (2) the choice of the deposition substrate and the material of the sampling line, and their effect on the mass spectra; (3) a method to separate the contributions of soot and condensable gas based on impact deposition; and finally (4) post-acquisition data processing. RESULTS: Compounds produced during flame combustion are detected on the surface of different deposition substrates and attributed a molecular formula based on mass defect analysis. Silicon and titanium wafers perform similarly, while the surface roughness of glass microfiber filters results in a reduced mass resolution. The mass spectra obtained from the analysis of different locations of the deposits obtained by impaction show characteristic patterns that are attributed to soot/condensable gas. CONCLUSIONS: A working method for the analysis of soot samples and the extraction of useful data from mass spectra is proposed. This protocol should help to avoid common experimental issues like sample contamination, while optimizing the setup performance by maximizing the achievable mass resolution.

6.
Astrobiology ; 24(1): 61-83, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38109217

RESUMO

Laser desorption-ionization mass spectrometry (MS) shows great potential for in situ molecular analysis of planetary surfaces and microanalysis of space-returned samples or (micro)fossils. Coupled with pyrolysis gas chromatography-mass spectrometry (Py-GC-MS) in ESA's ExoMars project, this technique could help assess further the origin of sulfur-bearing organic matter (OM) recently detected on Mars. To unravel this potential, we analyzed sulfurized microbial OM from ca. 150 million year-old carbonates with laser desorption-ionization mass spectrometry (single- and two-step: LDI-MS and L2MS), in comparison with time-of-flight secondary-ion mass spectrometry (ToF-SIMS), gas chromatography-mass spectrometry (GC-MS), and Py-GC-MS. We show that LDI-MS and L2MS readily detect sulfur-bearing moieties such as (alkyl)thiophenes and (alkyl)benzothiophenes. The mineral matrix, however, made the identification of sulfur-bearing molecules challenging in our L2MS experiment. The dominance of small aromatic hydrocarbons (≤14 carbons) in the LDI-MS and L2MS of the extracted soluble and insoluble OM and of the bulk rock is consistent with the low thermal maturity of the sediment and contrasts with the predominance of larger polycyclic aromatic structures commonly observed in meteorites with these techniques. We detected inorganic ions, in particular VO+, in demineralized OM that likely originate from geoporphyrins, which derive from chlorophylls during sediment diagenesis. Finally, insoluble OM yielded distinct compositions compared with extracted soluble OM, with a greater abundance of ions of mass-to-charge ratio (m/z) over 175 and additional N-moieties. This highlights the potential of laser-assisted MS to decipher the composition of macromolecular OM, in particular to investigate the preservation of biomacromolecules in microfossils. Studies comparing diverse biogenic and abiogenic OM are needed to further assess the use of this technique to search for biosignatures.


Assuntos
Carbonatos , Enxofre , Cromatografia Gasosa-Espectrometria de Massas/métodos , Espectrometria de Massa de Íon Secundário , Lasers , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
7.
J Pept Sci ; 19(6): 377-85, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23625525

RESUMO

Study of peptides adsorption on surfaces remains a current challenge in literature. A complementary approach, combining X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) was used to investigate the antimicrobial peptide nisin adsorption on hydrophilic and hydrophobic surfaces. The native low density polyethylene was used as hydrophobic support and it was grafted with acrylic acid to render it hydrophilic. XPS permitted to confirm nisin adsorption and to determine its amount on the surfaces. ToF-SIMS permitted to identify the adsorbed bacteriocin type and to observe its distribution and orientation behavior on both types of surfaces. Nisin was more oriented by its hydrophobic side to the hydrophobic substrate and by its hydrophilic side to the outer layers of the adsorbed peptide, in contrast to what was observed on the hydrophilic substrate. A correlation was found between XPS and ToF-SIMS results, the types of interactions on both surfaces and the observed antibacterial activity. Such interfacial studies are crucial for better understanding the peptides interactions and adsorption on surfaces and must be considered when setting up antimicrobial surfaces.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Nisina/química , Nisina/farmacologia , Polietileno/química , Adsorção , Interações Hidrofóbicas e Hidrofílicas , Listeria/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Relação Estrutura-Atividade , Propriedades de Superfície
8.
Environ Sci Pollut Res Int ; 28(3): 2810-2821, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32894442

RESUMO

For a long time, limestone has been massively used in stone building and monuments because of its easy extraction and common presence in the landscape. On ancient monuments, mostly built in urban areas, it is exposed to urban-borne pollutants responsible for specific alteration mechanisms and weathering kinetics. Especially, the dissolution of calcite and the precipitation of new phases will affect the limestone pore network, modify the stones capillary properties, and influence the further alteration. In order to better understand these processes, an altered limestone sample from 'Tribunal Administratif' (TA) in Paris was studied. The main secondary phase was found to be syngenite, which can be explained by the location of the sample close to the soil, a potential source of K (fertilizers). This phase is more soluble than gypsum that is commonly found on altered limestone. In order to assess the reactivity of the system (limestone and new phases), oxygen and hydrogen isotopes were used to trace the transfer of water (D218O) and identify the location of the reactive areas (susceptible to alteration). For that, TA samples were exposed in a climatic chamber to relative humidity (RH) cycles (25% RH for 2.5 days and 85% RH for 4.5 days) for 2 months with a D218O vapor to simulate alteration occurring in conditions sheltered from the rain. Results have shown that the water vapor easily circulates deep in the sample and reacts preferentially with syngenite the most reactive phase (compared with calcite and quartz). This phase could evolve in gypsum when exposed to an environment different from the one resulting in its formation.


Assuntos
Carbonato de Cálcio , Poluentes Ambientais , Poluentes Ambientais/análise , Paris , Chuva , Tempo (Meteorologia)
9.
Geobiology ; 18(4): 445-461, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32162473

RESUMO

Organic microfossils preserved in three dimensions in transparent mineral matrices such as cherts/quartzites, phosphates, or carbonates are best studied in petrographic thin sections. Moreover, microscale mass spectrometry techniques commonly require flat, polished surfaces to minimize analytical bias. However, contamination by epoxy resin in traditional petrographic sections is problematic for the geochemical study of the kerogen in these microfossils and more generally for the in situ analysis of fossil organic matter. Here, we show that epoxy contamination has a molecular signature that is difficult to distinguish from kerogen with time-of-flight secondary ion mass spectrometry (ToF-SIMS). This contamination appears pervasive in organic microstructures embedded in micro- to nano-crystalline carbonate. To solve this problem, a new semi-thin section preparation protocol without resin medium was developed for micro- to nanoscale in situ investigation of insoluble organic matter. We show that these sections are suited for microscopic observation of Proterozoic microfossils in cherts. ToF-SIMS reveals that these sections are free of pollution after final removal of a <10 nm layer of contamination using low-dose ion sputtering. ToF-SIMS maps of fragments from aliphatic and aromatic molecules and organic sulfur are correlated with the spatial distribution of organic microlaminae in a Jurassic stromatolite. Hydrocarbon-derived ions also appeared correlated with kerogenous microstructures in Archean cherts. These developments in analytical procedures should help future investigations of organic matter and in particular, microfossils, by allowing the spatial correlation of microscopy, spectroscopy, precise isotopic microanalyses, and novel molecular microanalyses such as ToF-SIMS.


Assuntos
Nanoestruturas , Carbonatos , Fósseis , Minerais , Espectrometria de Massa de Íon Secundário
10.
Commun Chem ; 3(1): 112, 2020 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-36703341

RESUMO

The role of polycyclic aromatic hydrocarbons (PAHs) in the formation of nascent soot particles in flames is well established and yet the detailed mechanisms are still not fully understood. Here we provide experimental evidence of the occurrence of dimerization of PAHs in the gas phase before soot formation in a laminar diffusion methane flame, supporting the hypothesis of stabilization of dimers through the formation of covalent bonds. The main findings of this work derive from the comparative chemical analysis of samples extracted from the gas to soot transition region of a laminar diffusion methane flame, and highlight two different groups of hydrocarbons that coexist in the same mass range, but show distinctly different behavior when processed with statistical analysis. In particular, the identified hydrocarbons are small-to-moderate size PAHs (first group) and their homo- and heterodimers stabilized by the formation of covalent bonds (second group).

11.
Sci Total Environ ; 639: 841-851, 2018 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-29803054

RESUMO

The bioavailability of pharmaceuticals is governed by their sorption in soils/sediments, as the retention processes determine their concentration in surface- and ground-water. The adsorption of these contaminants can involve various solid components such as organic matter, clays and metallic oxides, and their distribution among these solid components depends on contaminant and solid properties. In this paper we studied the adsorption of the pharmaceutical propranolol - a beta-blocker - on eight different solids (six soils, one sediment and one kaolinite-based sample) by batch experiments. The influence of contact time, propranolol concentration and pH was considered, as well as the presence of copper(II). The investigated solids displayed a wide variability in terms of CEC (cationic exchange capacity) and organic carbon and carbonates contents. The influence of pH was negligible in the pH range from 5.5 to 8.6. The adsorbed amounts were greatly dependent on the solid and two groups of solids were evidenced: three soils of high CEC and organic carbon contents which retained high amounts of propranolol, and three soils, the sediment and the kaolinite-based sample (low CEC and organic carbon content) displaying a low adsorption capacity for the beta-blocker. A linear model enabling the determination of the sorption parameters Kd and Koc was pertinent to describe the adsorption isotherms but the Koc values showed a great variability. It was shown that organic carbon content alone could not explain propranolol adsorption. The CEC value was identified as influent parameter and a simple empirical model was proposed to describe propranolol adsorption. At microscopic and molecular scales, ToF-SIMS experiments indicated (i) a decrease of potassium on the surface upon propranolol adsorption with a distribution of the beta-blocker similarly to alumino-silicates, iron and organic carbon on the surface confirming a cation exchange mechanism and (ii) the absence of degradation products and copper-propranolol complexes.


Assuntos
Cobre/química , Modelos Químicos , Propranolol/análise , Poluentes do Solo/análise , Espectrometria de Massa de Íon Secundário/métodos , Adsorção , Concentração de Íons de Hidrogênio , Solo
12.
Ultrason Sonochem ; 40(Pt A): 929-936, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28946505

RESUMO

In this report, indium-tin-oxide (ITO)-layer extraction from end-of-life (EOL) Liquid Crystal Displays (LCDs) was discussed by sulfuric acid leaching with simultaneous application of ultrasonication on the ITO-side of glass/ITO panels, exhibiting various dimensions. Applying this technique presents several advantages compared to the traditional leaching process such as fast and controllable kinetics, high extraction yield of indium and tin, selective recovery of these two metals possible, and the opportunity to recycle the neat glass separately avoiding additional separation processes. ITO-dissolution kinetics from EOL LCD panels were investigated as function of leaching time and acidity of sulfuric acid. At a temperature of 60°C, a nearly quantitative indium yield was obtained using an acid concentration of 18mol/L by simultaneous application of ultrasonication, whereas only 70% were recovered in the absence of ultrasound. Results from ICP-AES agreed well with SEM/BSE observations demonstrating the high efficiency of the ultrasound assisted process since only 3-4min were required to obtain maximum ITO recovery.

13.
Nat Commun ; 6: 8567, 2015 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-26461170

RESUMO

Primitive carbonaceous chondrites contain a large array of organic compounds dominated by insoluble organic matter (IOM). A striking feature of this IOM is the systematic enrichment in deuterium compared with the solar hydrogen reservoir. This enrichment has been taken as a sign of low-temperature ion-molecule or gas-grain reactions. However, the extent to which Solar System processes, especially ionizing radiation, can affect D/H ratios is largely unknown. Here, we report the effects of electron irradiation on the hydrogen isotopic composition of organic precursors containing different functional groups. From an initial terrestrial composition, overall D-enrichments and differential intramolecular fractionations comparable with those measured in the Orgueil meteorite were induced. Therefore, ionizing radiation can quantitatively explain the deuteration of organics in some carbonaceous chondrites. For these meteorites, the precursors of the IOM may have had the same isotopic composition as the main water reservoirs of the inner Solar System.

14.
Nat Commun ; 6: 7966, 2015 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-26305681

RESUMO

Glacial episodes have been linked to Ordovician-Silurian extinction events, but cooling itself may not be solely responsible for these extinctions. Teratological (malformed) assemblages of fossil plankton that correlate precisely with the extinction events can help identify alternate drivers of extinction. Here we show that metal poisoning may have caused these aberrant morphologies during a late Silurian (Pridoli) event. Malformations coincide with a dramatic increase of metals (Fe, Mo, Pb, Mn and As) in the fossils and their host rocks. Metallic toxins are known to cause a teratological response in modern organisms, which is now routinely used as a proxy to assess oceanic metal contamination. Similarly, our study identifies metal-induced teratology as a deep-time, palaeobiological monitor of palaeo-ocean chemistry. The redox-sensitive character of enriched metals supports emerging 'oceanic anoxic event' models. Our data suggest that spreading anoxia and redox cycling of harmful metals was a contributing kill mechanism during these devastating Ordovician-Silurian palaeobiological events.


Assuntos
Anormalidades Induzidas por Medicamentos , Extinção Biológica , Fósseis , Intoxicação por Metais Pesados , Metais/toxicidade , Plâncton , Intoxicação , Teratogênicos/toxicidade , Arsênio/toxicidade , Anormalidades Congênitas , Ferro/toxicidade , Chumbo/toxicidade , Líbia , Manganês/toxicidade , Molibdênio/toxicidade , Oceanos e Mares , Espectrometria de Massa de Íon Secundário , Teratologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA