Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
J Cardiothorac Vasc Anesth ; 34(2): 521-529, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30765207

RESUMO

This special article presents perspectives on the mentoring of fellows for academic practice in adult cardiothoracic anesthesiology. A comprehensive mentoring model should address the areas of clinical care, educational expertise and exposure to scholarly activity. The additional value of educational exposure to patient safety, quality improvement and critical care medicine in this model is also explored.


Assuntos
Anestesiologia , Tutoria , Adulto , Humanos , Mentores , Estados Unidos
2.
J Cardiothorac Vasc Anesth ; 33(10): 2804-2813, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30738750

RESUMO

Perfusion strategies for cardiopulmonary bypass have direct consequences on pediatric cardiac surgery outcomes. However, inconsistent study results and a lack of uniform evidence-based guidelines for pediatric cardiopulmonary bypass management have led to considerable variability in perfusion practices among, and even within, institutions. Important aspects of cardiopulmonary bypass that can be optimized to improve clinical outcomes of pediatric patients undergoing cardiac surgery include extracorporeal circuit components, priming solutions, and additives. This review summarizes the current literature on circuit components and priming solution composition with an emphasis on crystalloid, colloid, and blood-based primes, as well as mannitol, bicarbonate, and calcium.


Assuntos
Procedimentos Cirúrgicos Cardíacos/tendências , Ponte Cardiopulmonar/métodos , Ponte Cardiopulmonar/tendências , Albuminas/efeitos adversos , Albuminas/farmacologia , Procedimentos Cirúrgicos Cardíacos/métodos , Soluções Cardioplégicas , Ponte Cardiopulmonar/instrumentação , Criança , Soluções Cristaloides , Drenagem/métodos , Desenho de Equipamento , Humanos , Bombas de Infusão , Propriedades de Superfície
3.
Heart Vessels ; 33(3): 279-290, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28975398

RESUMO

Each stroke volume ejected by the heart is distributed along the arterial system as a pressure waveform. How far the front of the pressure waveform travels within the arterial system depends both on the pulse wave velocity (PWV) and the ejection time (ET). We tested the hypothesis that ET and PWV are coupled together, in order to produce a pulse wave travel distance (PWTD = PWV × ET) which would match the distance from the heart to the most distant site in the arterial system. The study was conducted in 11 healthy volunteers. We recorded lead II of the ECG along with pulse plethysmography at ear, finger and toe. The ET at the ear and pulse arrival time to each peripheral site were extracted. We then calculated PWV followed by PWTD for each location. Taken into account the individual subject variability PWTDToe in the supine position was 153 cm (95% CI 146-160 cm). It was not different from arterial pathway distance from the heart to the toe (D Toe 153 cm). The PWTDFinger and PWTDEar were longer than the distance from the heart to the finger and ear irrespective of body position. ETEar and PWVToe appear to be coupled in healthy subjects to produce a PWTD that is roughly equivalent to the arterial pathway distance to the toe. We propose that PWTD should be evaluated further to test its potential as a noninvasive parameter of ventricular-arterial coupling in subjects with cardiovascular diseases.


Assuntos
Velocidade do Fluxo Sanguíneo/fisiologia , Frequência Cardíaca/fisiologia , Análise de Onda de Pulso/métodos , Volume Sistólico/fisiologia , Função Ventricular/fisiologia , Adulto , Feminino , Voluntários Saudáveis , Humanos , Masculino , Pessoa de Meia-Idade , Fluxo Pulsátil , Adulto Jovem
4.
Amino Acids ; 49(3): 695-704, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27438265

RESUMO

Aging is associated with increased cardiomyocyte loss, left-ventricular hypertrophy, and the accumulation of extracellular matrix, which results in declining cardiac function. The role of the matrix crosslinking enzyme, tissue transglutaminase (TG2), in age-related myocardial stiffness, and contractile function remains incompletely understood. In this study, we examined the role of TG2 in cardiac function, and determined whether TG2 inhibition can prevent age-associated changes in cardiac function. Male Fisher rats (18-month-old) were administered the transglutaminase inhibitor cystamine (study group) or saline (age-matched controls) for 12 weeks via osmotic mini-pumps. Cardiac function was determined by echocardiography and invasive pressure-volume loops. Rat hearts were dissected out, and TG2 expression, activity, and S-nitrosation were determined. Young (6-month-old) males were used as controls. TG2 activity significantly increased in the saline-treated but not in the cystamine-treated aging rat hearts. TG2 expression also increased with age and was unaltered by cystamine treatment. Aged rats showed increased left ventricular (LV) end-systolic dimension and a decrease in fractional shortening compared with young, which was not affected by cystamine. However, cystamine treatment preserved the preload-independent index of LV filling pressure and restored end-diastolic pressure, end-diastolic pressure-volume relationships, and arterial elastance toward young. An increase in TG2 activity contributes to age-associated increase in diastolic stiffness, thereby contributing to age-associated diastolic dysfunction. TG2 may thus represent a novel target for age-associated diastolic heart failure.


Assuntos
Envelhecimento/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Ventrículos do Coração/enzimologia , Hipertrofia Ventricular Esquerda/enzimologia , Miócitos Cardíacos/enzimologia , Transglutaminases/metabolismo , Envelhecimento/patologia , Animais , Pressão Sanguínea , Cistamina/farmacologia , Ecocardiografia , Elasticidade , Inibidores Enzimáticos/farmacologia , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/enzimologia , Matriz Extracelular/patologia , Proteínas de Ligação ao GTP/antagonistas & inibidores , Proteínas de Ligação ao GTP/genética , Expressão Gênica , Ventrículos do Coração/fisiopatologia , Hipertrofia Ventricular Esquerda/genética , Hipertrofia Ventricular Esquerda/fisiopatologia , Hipertrofia Ventricular Esquerda/prevenção & controle , Bombas de Infusão Implantáveis , Masculino , Miocárdio/enzimologia , Miocárdio/patologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Proteína 2 Glutamina gama-Glutamiltransferase , Ratos , Ratos Endogâmicos F344 , Transglutaminases/antagonistas & inibidores , Transglutaminases/genética
5.
Proc Natl Acad Sci U S A ; 111(50): 17977-82, 2014 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-25404319

RESUMO

Melanopsin (opsin4; Opn4), a non-image-forming opsin, has been linked to a number of behavioral responses to light, including circadian photo-entrainment, light suppression of activity in nocturnal animals, and alertness in diurnal animals. We report a physiological role for Opn4 in regulating blood vessel function, particularly in the context of photorelaxation. Using PCR, we demonstrate that Opn4 (a classic G protein-coupled receptor) is expressed in blood vessels. Force-tension myography demonstrates that vessels from Opn4(-/-) mice fail to display photorelaxation, which is also inhibited by an Opn4-specific small-molecule inhibitor. The vasorelaxation is wavelength-specific, with a maximal response at ∼430-460 nm. Photorelaxation does not involve endothelial-, nitric oxide-, carbon monoxide-, or cytochrome p450-derived vasoactive prostanoid signaling but is associated with vascular hyperpolarization, as shown by intracellular membrane potential measurements. Signaling is both soluble guanylyl cyclase- and phosphodiesterase 6-dependent but protein kinase G-independent. ß-Adrenergic receptor kinase 1 (ßARK 1 or GRK2) mediates desensitization of photorelaxation, which is greatly reduced by GRK2 inhibitors. Blue light (455 nM) regulates tail artery vasoreactivity ex vivo and tail blood blood flow in vivo, supporting a potential physiological role for this signaling system. This endogenous opsin-mediated, light-activated molecular switch for vasorelaxation might be harnessed for therapy in diseases in which altered vasoreactivity is a significant pathophysiologic contributor.


Assuntos
Vasos Sanguíneos/fisiologia , Luz , Opsinas de Bastonetes/metabolismo , Transdução de Sinais/fisiologia , Vasodilatação/fisiologia , Animais , Vasos Sanguíneos/metabolismo , Western Blotting , GMP Cíclico/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 6/metabolismo , Quinase 2 de Receptor Acoplado a Proteína G/metabolismo , Fluxometria por Laser-Doppler , Camundongos , Miografia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Vasodilatação/efeitos da radiação
6.
Anesth Analg ; 120(3): 554-569, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25695573

RESUMO

Hypertrophic cardiomyopathy (HCM) is a relatively common disorder that anesthesiologists encounter among patients in the perioperative period. Fifty years ago, HCM was thought to be an obscure disease. Today, however, our understanding and ability to diagnose patients with HCM have improved dramatically. Patients with HCM have genotypic and phenotypic variability. Indeed, a subgroup of these patients exhibits the HCM genotype but not the phenotype (left ventricular hypertrophy). There are a number of treatment modalities for these patients, including pharmacotherapy to control symptoms, implantable cardiac defibrillators to manage malignant arrhythmias, and surgical myectomy and septal ablation to decrease the left ventricular outflow obstruction. Accurate diagnosis is vital for the perioperative management of these patients. Diagnosis is most often made using echocardiographic assessment of left ventricular hypertrophy, left ventricular outflow tract gradients, systolic and diastolic function, and mitral valve anatomy and function. Cardiac magnetic resonance imaging also has a diagnostic role by determining the extent and location of left ventricular hypertrophy and the anatomic abnormalities of the mitral valve and papillary muscles. In this review on hypertrophic cardiomyopathy for the noncardiac anesthesiologist, we discuss the clinical presentation and genetic mutations associated with HCM, the critical role of echocardiography in the diagnosis and the assessment of surgical interventions, and the perioperative management of patients with HCM undergoing noncardiac surgery and management of the parturient with HCM.


Assuntos
Cardiomiopatia Hipertrófica , Animais , Cardiomiopatia Hipertrófica/diagnóstico , Cardiomiopatia Hipertrófica/genética , Cardiomiopatia Hipertrófica/fisiopatologia , Cardiomiopatia Hipertrófica/terapia , Diagnóstico por Imagem/métodos , Predisposição Genética para Doença , Humanos , Contração Miocárdica , Fenótipo , Valor Preditivo dos Testes , Resultado do Tratamento , Função Ventricular Esquerda
7.
Blood Cells Mol Dis ; 52(4): 230-5, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24246527

RESUMO

Sickle cell disease (SCD) is associated with increase in oxidative stress and irreversible membrane changes that originates from the instability and polymerization of deoxygenated hemoglobin S (HbS). The relationship between erythrocyte membrane changes as assessed by a decrease in deformability and oxidative stress as assessed by an increase in heme degradation was investigated. The erythrocyte deformability and heme degradation for 27 subjects with SCD and 7 with sickle trait were compared with normal healthy adults. Changes in both deformability and heme degradation increased in the order of control to trait to non-crisis SCD to crisis SCD resulting in a very significantly negative correlation between deformability and heme degradation. However, a quantitative analysis of the changes in deformability and heme degradation for these different groups of subjects indicated that sickle trait had a much smaller effect on deformability than on heme degradation, while crisis affects deformability to a greater extent than heme degradation. These findings provide insights into the relative contributions of erythrocyte oxidative stress and membrane damage during the progression of SCD providing a better understanding of the pathophysiology of SCD.


Assuntos
Anemia Falciforme/metabolismo , Anemia Falciforme/patologia , Deformação Eritrocítica , Eritrócitos Anormais/metabolismo , Eritrócitos/metabolismo , Eritrócitos/patologia , Estresse Oxidativo , Adolescente , Adulto , Anemia Falciforme/diagnóstico , Criança , Feminino , Hemoglobina Fetal/metabolismo , Heme/metabolismo , Hemoglobina Falciforme/metabolismo , Hemoglobinas/metabolismo , Humanos , Masculino , Proteólise , Traço Falciforme/diagnóstico , Traço Falciforme/metabolismo , Traço Falciforme/patologia , Adulto Jovem
8.
Transfusion ; 54(2): 434-44, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23781865

RESUMO

BACKGROUND: Red blood cell (RBC) deformation is critical for microvascular perfusion and oxygen delivery to tissues. Abnormalities in RBC deformability have been observed in aging, sickle cell disease, diabetes, and preeclampsia. Although nitric oxide (NO) prevents decreases in RBC deformability, the underlying mechanism is unknown. STUDY DESIGN AND METHODS: As an experimental model, we used ionophore A23187-mediated calcium influx in RBCs to reduce their deformability and investigated the role of NO donor sodium nitroprusside (SNP) and KCa3.1 (Gardos) channel blockers on RBC deformability (measured as elongation index [EI] by microfluidic ektacytometry). RBC intracellular Ca(2+) and extracellular K(+) were measured by inductively coupled plasma mass spectrometry and potassium ion selective electrode, respectively. RESULTS: SNP treatment of RBCs blocked the Ca(2+) (approx. 10 µmol/L)-induced decrease in RBC deformability (EI 0.34 ± 0.02 vs. 0.09 ± 0.01, control vs. Ca(2+) loaded, p < 0.001; and EI 0.37 ± 0.02 vs. 0.30 ± 0.01, SNP vs. SNP plus Ca(2+) loaded) as well as Ca(2+) influx and K(+) efflux. The SNP effect was similar to that observed after pharmacologic blockade of the KCa3.1 channel (with charybdotoxin or extracellular medium containing isotonic K(+) concentration). In RBCs from KCa3.1(-/-) mice, 10 µmol/L Ca(2+) loading did not decrease cellular deformability. A preliminary attempt to address the molecular mechanism of SNP protection suggests the involvement of cell surface thiols. CONCLUSION: Our results suggest that nitroprusside treatment of RBCs may protect them from intracellular calcium increase-mediated stiffness, which may occur during microvascular perfusion in diseased states, as well as during RBC storage.


Assuntos
Calcimicina/farmacologia , Cálcio/metabolismo , Deformação Eritrocítica/efeitos dos fármacos , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/antagonistas & inibidores , Nitroprussiato/farmacologia , Animais , Doadores de Sangue , Ionóforos de Cálcio/farmacologia , Charibdotoxina/farmacologia , Inibidores Enzimáticos/farmacologia , Humanos , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/genética , Ácido Iodoacético/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurotoxinas/farmacologia , Óxido Nítrico/metabolismo , Doadores de Óxido Nítrico/farmacologia , Potássio/farmacologia
9.
Am J Physiol Heart Circ Physiol ; 305(6): H803-10, 2013 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-23873798

RESUMO

Nitric oxide (NO) can modulate arterial stiffness by regulating both functional and structural changes in the arterial wall. Tissue transglutaminase (TG2) has been shown to contribute to increased central aortic stiffness by catalyzing the cross-linking of matrix proteins. NO S-nitrosylates and constrains TG2 to the cytosolic compartment and thereby holds its cross-linking function latent. In the present study, the role of endothelial NO synthase (eNOS)-derived NO in regulating TG2 function was studied using eNOS knockout mice. Matrix-associated TG2 and TG2 cross-linking function were higher, whereas TG2 S-nitrosylation was lower in the eNOS(-/-) compared with wild-type (WT) mice. Pulse-wave velocity (PWV) and blood pressure measured noninvasively were elevated in the eNOS(-/-) compared with WT mice. Intact aortas and decellularized aortic tissue scaffolds of eNOS(-/-) mice were significantly stiffer, as determined by tensile testing. The carotid arteries of the eNOS(-/-) mice were also stiffer, as determined by pressure-dimension analysis. Invasive methods to determine the PWV-mean arterial pressure relationship showed that PWV in eNOS(-/-) and WT diverge at higher mean arterial pressure. Thus eNOS-derived NO regulates TG2 localization and function and contributes to vascular stiffness.


Assuntos
Aorta/fisiologia , Pressão Sanguínea/fisiologia , Endotélio Vascular/fisiologia , Proteínas de Ligação ao GTP/biossíntese , Óxido Nítrico Sintase Tipo III/metabolismo , Transglutaminases/biossíntese , Rigidez Vascular/fisiologia , Animais , Ativação Enzimática , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Óxido Nítrico Sintase Tipo III/genética , Proteína 2 Glutamina gama-Glutamiltransferase , Estresse Mecânico , Resistência à Tração/fisiologia
10.
Amino Acids ; 44(1): 261-9, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21984378

RESUMO

The multifunctional enzyme tissue transglutaminase (TG2) contributes to the development and progression of several cardiovascular diseases. Extracellular rather than intracellular TG2 is enzymatically active, however, the mechanism by which it is exported out of the cell remains unknown. Nitric oxide (NO) is shown to constrain TG2 externalization in endothelial and fibroblast cells. Here, we examined the role of both exogenous and endogenous (endothelial cell-derived) NO in regulating TG2 localization in vascular cells and tissue. NO synthase inhibition in endothelial cells (ECs) using N-nitro L-arginine methyl ester (L-NAME) led to a time-dependent decrease in S-nitrosation and increase in externalization of TG2. Laminar shear stress led to decreased extracellular TG2 in ECs. S-nitrosoglutathione treatment led to decreased activity and externalization of TG2 in human aortic smooth muscle and fibroblast (IMR90) cells. Co-culture of these cells with ECs resulted in increased S-nitrosation and decreased externalization and activity of TG2, which was reversed by L-NAME. Aged Fischer 344 rats had higher tissue scaffold-associated TG2 compared to young. NO regulates intracellular versus extracellular TG2 localization in vascular cells and tissue, likely via S-nitrosation. This in part, explains increased TG2 externalization and activity in aging aorta.


Assuntos
Células Endoteliais/enzimologia , Miócitos de Músculo Liso/enzimologia , Óxido Nítrico/fisiologia , Transglutaminases/metabolismo , Fatores Etários , Animais , Aorta/citologia , Linhagem Celular , Técnicas de Cocultura , Endotélio Vascular/citologia , Matriz Extracelular/enzimologia , Fibroblastos/enzimologia , Proteínas de Ligação ao GTP , Humanos , NG-Nitroarginina Metil Éster/farmacologia , Óxido Nítrico Sintase Tipo III/antagonistas & inibidores , Óxido Nítrico Sintase Tipo III/fisiologia , Nitrosação , Proteína 2 Glutamina gama-Glutamiltransferase , Transporte Proteico , Ratos , Ratos Endogâmicos F344
13.
Circ Res ; 107(1): 117-25, 2010 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-20489165

RESUMO

RATIONALE: Although an age-related decrease in NO bioavailability contributes to vascular stiffness, the underlying molecular mechanisms remain incompletely understood. We hypothesize that NO constrains the activity of the matrix crosslinking enzyme tissue transglutaminase (TG2) via S-nitrosylation in young vessels, a process that is reversed in aging. OBJECTIVE: We sought to determine whether endothelium-dependent NO regulates TG2 activity by S-nitrosylation and whether this contributes to age-related vascular stiffness. METHODS AND RESULTS: We first demonstrate that NO suppresses activity and increases S-nitrosylation of TG2 in cellular models. Next, we show that nitric oxide synthase (NOS) inhibition leads to increased surface and extracellular matrix-associated TG2. We then demonstrate that endothelium-derived bioactive NO primarily mediates its effects through TG2, using TG2(-/-) mice chronically treated with the NOS inhibitor l-N(G)-nitroarginine methyl ester (L-NAME). We confirm that TG2 activity is modulated by endothelium-derived bioactive NO in young rat aorta. In aging rat aorta, although TG2 expression remains unaltered, its activity increases and S-nitrosylation decreases. Furthermore, TG2 inhibition decreases vascular stiffness in aging rats. Finally, TG2 activity and matrix crosslinks are augmented with age in human aorta, whereas abundance remains unchanged. CONCLUSIONS: Decreased S-nitrosylation of TG2 and increased TG activity lead to enhanced matrix crosslinking and contribute to vascular stiffening in aging. TG2 appears to be the member of the transglutaminase family primarily contributing to this phenotype. Inhibition of TG2 could thus represent a therapeutic target for age-associated vascular stiffness and isolated systolic hypertension.


Assuntos
Envelhecimento/metabolismo , Endotélio Vascular/enzimologia , Proteínas de Ligação ao GTP/metabolismo , Óxido Nítrico/fisiologia , Transglutaminases/metabolismo , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/patologia , Animais , Células Cultivadas , Endotélio Vascular/patologia , Proteínas de Ligação ao GTP/antagonistas & inibidores , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Células NIH 3T3 , Óxido Nítrico/antagonistas & inibidores , Proteína 2 Glutamina gama-Glutamiltransferase , Ratos , Ratos Endogâmicos F344 , Transglutaminases/antagonistas & inibidores
14.
Eur J Appl Physiol ; 112(8): 2933-41, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22160208

RESUMO

Arginase-II (Arg-II) reciprocally regulates nitric oxide synthase (NOS) and offsets basal myocardial contractility. Furthermore, decreased or absent myocardial NOS activity is associated with a depression in myocardial contractile reserve. We therefore hypothesized that upregulation of Arg-II might in part be responsible for depressed myocardial contractility associated with age. We studied arginase activity/expression, NOS expression, NO production in the presence and absence of the arginase inhibitor S-(2-boronoethyl)-L: -cysteine (BEC) in old (22 months) and young (3 months) rat hearts and myocytes. The spatial confinement of Arg-II and NOS was determined with immuno-electron-miocrographic (IEM) and immuno-histochemical studies. We tested the effect of BEC on the force frequency response (FFR) in myocytes, as well as NOS abundance and activity. Arginase activity and Arg-II expression was increased in old hearts (2.27 ± 0.542 vs. 0.439 ± 0.058 nmol urea/mg protein, p = 0.02). This was associated with a decrease in NO production, which was restored with BEC (4.54 ± 0.582 vs. 12.88 ± 0.432 µmol/mg, p < 0.01). IEM illustrates increased mitochondrial density in old myocytes (51.7 ± 1.8 vs. 69 ± 2.2 × 10(6)/cm(2), p < 0.01), potentially contributing to increased Arg-II abundance and activity. Immunohistochemistry revealed an organized pattern of mitochondria and Arg-II that appears disrupted in old myocytes. The FFR was significantly depressed in old myocytes (61.42 ± 16.04 vs. -5.15 ± 5.65%), while inhibition of Arg-II restored the FFR (-5.15 ± 5.65 vs. 70.98 ± 6.10%). NOS-2 is upregulated sixfold in old hearts contributing to increased production of reactive oxygen species which is attenuated with NOS-2 inhibition by 1400 W (4,735 ± 427 vs. 4,014 ± 314 RFU/min/mg protein, p = 0.005). Arg-II upregulation in aging rat hearts contributes to age-related decreased contractile function.


Assuntos
Envelhecimento/metabolismo , Arginase/metabolismo , Cardiopatias/etiologia , Contração Miocárdica , Miócitos Cardíacos/enzimologia , Fatores Etários , Animais , Arginase/antagonistas & inibidores , Ácidos Borônicos/farmacologia , Inibidores Enzimáticos/farmacologia , Cardiopatias/enzimologia , Cardiopatias/patologia , Cardiopatias/fisiopatologia , Imuno-Histoquímica , Microscopia Imunoeletrônica , Mitocôndrias Cardíacas/enzimologia , Mitocôndrias Cardíacas/ultraestrutura , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/ultraestrutura , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Ratos , Ratos Wistar , Regulação para Cima
15.
Anesthesiol Clin ; 40(4): 557-574, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36328615

RESUMO

The vascular system is one of the earliest recognized anatomical systems. It is composed of 3 parts; arterial, capillary, and venous, each with their own unique anatomy and physiology. Blood flow through this system is compromised in aging, atherosclerosis and peripheral vascular disease, and the practicing anesthesiologist must understand both the physiology and pathophysiology of the vascular tree.


Assuntos
Hemodinâmica , Doenças Vasculares Periféricas , Humanos , Envelhecimento/fisiologia
16.
Anesth Analg ; 112(5): 1048-60, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21474663

RESUMO

Chronological age is a well-established risk factor for the development of cardiovascular diseases. The changes that accumulate in the vasculature with age, however, are highly variable. It is now increasingly recognized that indices of vascular health are more reliable than age per se in predicting adverse cardiovascular outcomes. The variation in the accrual of these age-related vascular changes is a function of multiple genetic and environmental factors. In this review, we highlight some of the pathophysiological mechanisms that characterize the vascular aging phenotype. Furthermore, we provide an overview of the key outcome studies that address the value of these vascular health indices in general and discuss potential effects on perioperative cardiovascular outcomes.


Assuntos
Envelhecimento , Artérias/fisiopatologia , Doenças Cardiovasculares/etiologia , Hemodinâmica , Adulto , Fatores Etários , Idoso , Envelhecimento/patologia , Artérias/patologia , Doenças Cardiovasculares/patologia , Doenças Cardiovasculares/fisiopatologia , Elasticidade , Humanos , Pessoa de Meia-Idade , Medição de Risco , Fatores de Risco
17.
Circ Res ; 102(8): 923-32, 2008 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-18309100

RESUMO

Oxidized low-density lipoproteins increase arginase activity and reciprocally decrease endothelial NO in human aortic endothelial cells. Here, we demonstrate that vascular endothelial arginase activity is increased in atherogenic-prone apolipoprotein E-null (ApoE(-/-)) and wild-type mice fed a high cholesterol diet. In ApoE(-/-) mice, selective arginase II inhibition or deletion of the arginase II gene (Arg II(-/-) mice) prevents high-cholesterol diet-dependent decreases in vascular NO production, decreases endothelial reactive oxygen species production, restores endothelial function, and prevents oxidized low-density lipoprotein-dependent increases in vascular stiffness. Furthermore, arginase inhibition significantly decreases plaque burden. These data indicate that arginase II plays a critical role in the pathophysiology of cholesterol-mediated endothelial dysfunction and represents a novel target for therapy in atherosclerosis.


Assuntos
Arginase/fisiologia , Aterosclerose/etiologia , Animais , Apolipoproteínas E/deficiência , Arginase/antagonistas & inibidores , Arginase/genética , Aterosclerose/patologia , Colesterol/administração & dosagem , Células Endoteliais/patologia , Endotélio Vascular/patologia , Endotélio Vascular/fisiopatologia , Camundongos , Camundongos Knockout , Óxido Nítrico/biossíntese , Óxido Nítrico Sintase Tipo III , Regulação para Cima , Resistência Vascular
18.
Anesth Analg ; 111(4): 870-7, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20705779

RESUMO

BACKGROUND: Emerging evidence suggests that phosphoinositide 3-kinase (PI3K) may modulate cardiac inotropy; however, the underlying mechanism remains elusive. We hypothesized that ß(2)-adrenergic receptor (AR)-coupled PI3K constrains increases in cardiac inotropy through cyclic adenosine monophosphate (cAMP)-dependent phosphodiesterase (PDE) activation. METHODS: We tested the effects of PI3K and PDE4 inhibition on myocardial contractility by using isolated murine cardiac myocytes to study physiologic functions (sarcomere shortening [SS] and intracellular Ca(+) transients), as well as cAMP and PDE activity. RESULTS: PI3K inhibition with the reversible inhibitor LY294002 (LY) resulted in a significant increase in SS and Ca(2+) handling, indicating enhanced contractility. This response depended on G(iα) protein activity, because incubation with pertussis toxin (an irreversible G(iα) inhibitor) abolished the LY-induced hypercontractility. In addition, PI3K inhibition had no greater effect on SS than both a PDE3,4 inhibitor (milrinone) and LY combined. Furthermore, LY decreased PDE4 activity in a concentration-dependent manner (58.0% of PDE4 activity at LY concentrations of 10 µM). Notably, PI3K(γ) coimmunoprecipitated with PDE4D. The ß(2)-AR inverse agonist, ICI 118,551 (ICI), abolished induced increases in contractility. CONCLUSIONS: PI3K modulates myocardial contractility by a cAMP-dependent mechanism through the regulation of the catalytic activity of PDE4. Furthermore, basal agonist-independent activity of the ß(2)-AR and its resultant cAMP production and enhancement of the catalytic activity of PDE4 through PI3K represents an example of integrative cellular signaling, which controls cAMP dynamics and thereby contractility in the cardiac myocyte. These results help to explain the mechanism by which milrinone is able to increase myocardial contractility in the absence of direct ß-adrenergic stimulation and why it can further augment contractility in the presence of maximal ß-adrenergic stimulation.


Assuntos
AMP Cíclico/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Contração Miocárdica/fisiologia , Fosfatidilinositol 3-Quinases/metabolismo , Receptores Adrenérgicos beta 2/metabolismo , Animais , Ativação Enzimática/fisiologia , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Células HeLa , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/metabolismo , Células U937
19.
Eur J Appl Physiol ; 110(2): 395-404, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20512503

RESUMO

Emerging evidence suggests that nitric oxide (NO) plays a pivotal role in the mechanism of vascular hyporesponsiveness contributing to microgravity-induced orthostatic intolerance. The cellular and enzymatic source of the NO, however, remains controversial. In addition, the time course of the endothelial-dependent contribution remains unstudied. We tested the hypotheses that the change in vasoresponsiveness seen in acute (3-day) hindlimb unweighted (HLU) animals is due to an endothelium-dependent mechanism and that endothelial-dependent attenuation in vasoreactivity is due to endothelial nitric oxide synthase (NOS-3) dependent activation. Vasoreactivity was investigated in rat aortic rings following acute HLU treatment. Dose responsiveness to norepinepherine (NE) was depressed after 3-day HLU [1,338 +/- 54 vs. 2,325 +/- 58 mg at max (NE), HLU vs. C, P < 0.001]. However, removal of the endothelium restored the vascular contractility to that of C. In addition, 1H-oxadiazole quinoxalin-1-one (ODQ), a soluble guanylyl cyclase inhibitor, restored the reduced vasoconstrictor responses to phenylephrine (PE) seen in 3-day HLU rings (1.30 +/- 0.10 vs. 0.53 +/- 0.07 g, HLU + ODQ vs. HLU, P = 0.0001). Ca(+) dependent nitric oxide synthase (NOS) activity was increased, as was vascular NO products as a result of HLU. While NOS-3 expression was not increased in HLU rats, phosphorylation of NOS-3 at serine-1177 (an activator of NOS-3) was increased while phosphorylation of serine-495 (an inactivator of NOS-3) was decreased. These findings demonstrate that changes in vasoresponsiveness in the acute HLU model of microgravity are due to an upregulation of the endothelial-dependent NO/cGMP pathway through NOS phosphorylation.


Assuntos
Aorta/metabolismo , GMP Cíclico/metabolismo , Endotélio Vascular/metabolismo , Óxido Nítrico/metabolismo , Sistemas do Segundo Mensageiro , Vasoconstrição , Vasodilatação , Simulação de Ausência de Peso , Animais , Aorta/efeitos dos fármacos , Caveolina 1/metabolismo , Relação Dose-Resposta a Droga , Endotélio Vascular/efeitos dos fármacos , Ativação Enzimática , Inibidores Enzimáticos/farmacologia , Guanilato Ciclase/antagonistas & inibidores , Guanilato Ciclase/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Elevação dos Membros Posteriores , Masculino , Óxido Nítrico Sintase Tipo III/metabolismo , Fosforilação , Ratos , Receptores Citoplasmáticos e Nucleares/antagonistas & inibidores , Receptores Citoplasmáticos e Nucleares/metabolismo , Sistemas do Segundo Mensageiro/efeitos dos fármacos , Serina , Guanilil Ciclase Solúvel , Fatores de Tempo , Vasoconstrição/efeitos dos fármacos , Vasoconstritores/farmacologia , Vasodilatação/efeitos dos fármacos , Vasodilatadores/farmacologia
20.
Front Physiol ; 11: 824, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32792976

RESUMO

BACKGROUND: Hypertension is a well-established driver of vascular remodeling and stiffening. The goal of this study was to evaluate whether restoring normal blood pressure (BP) fully restores vascular stiffness toward that of normotensive controls. METHODS: C57Bl6/J male mice received angiotensin II (angII; 1 µg/kg/min) via infusion pump for 8 weeks (hypertension group: HH), angII for 4 weeks (hypertension group: H4), angII for 4 weeks followed by 4 weeks of recovery (reversal group: HN), or sham treatment (normotensive group: NN). BP, heart rate, and pulse wave velocity (PWV) were measured longitudinally. At the end of the study period, aortas were harvested for testing of vasoreactivity, passive mechanical properties, and vessel structure. RESULTS: The HH group exhibited a sustained increase in BP and PWV over the 8-week period (p < 0.01). In the HN group, BP and PWV increased during the 4-week angII infusion, and, though BP was restored during the 4-week recovery, PWV exhibited only partial restoration (p < 0.05). Heart rate was similar in all cohorts. Compared to NN controls, both HH and HN groups had significantly increased wall thickness (p < 0.05 HH vs. NN, p < 0.01 HN vs. NN), mucosal extracellular matrix accumulation (p < 0.0001 HH vs. NN, p < 0.05 HN vs. NN), and intralamellar distance (p < 0.001 HH vs. NN, p < 0.01 HN vs. NN). Both intact and decellularized vessels were noted to have significantly higher passive stiffness in the HH and H4 cohorts than in NN controls (p < 0.0001). However, in the HN cohort, intact vessels were only modestly stiffer than those of NN controls, and decellularized HN vessels were identical to those from the NN controls. Compared to NN controls, the HH and HN cohorts exhibited significantly diminished phenylephrine-induced contraction (p < 0.0001) and endothelium-dependent vasodilation (p < 0.05). CONCLUSION: Hypertension causes a significant increase in in vivo aortic stiffness that is only partially reversible after BP normalization. Although hypertension does lead to matrix stiffening, restoration of BP restores matrix mechanics to levels similar to those of normotensive controls. Nevertheless, endothelial and vascular smooth muscle cell dysfunction persist after restoration of normotension. This dysfunction is, in part, responsible for augmented PWV after restoration of BP.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA