RESUMO
Respiratory syncytial virus (RSV) is among the most common causes of lower respiratory tract infection (LRTI) and hospitalization in infants. However, the mechanisms of immune control in infants remain incompletely understood. Antibody profiling against attachment (G) and fusion (F) proteins in children less than 2 years of age, with mild (outpatients) or severe (inpatients) RSV disease, indicated substantial age-dependent differences in RSV-specific immunity. Maternal antibodies were detectable for the first 3 months of life, followed by a long window of immune vulnerability between 3 and 6 months and a rapid evolution of FcγR-recruiting immunity after 6 months of age. Acutely ill hospitalized children exhibited lower G-specific antibodies compared with healthy controls. With disease resolution, RSV-infected infants generated broad functional RSV strain-specific G-responses and evolved cross-reactive F-responses, with minimal maternal imprinting. These data suggest an age-independent RSV G-specific functional humoral correlate of protection, and the evolution of RSV F-specific functional immunity with disease resolution.
Assuntos
Anticorpos Antivirais , Reações Cruzadas , Infecções por Vírus Respiratório Sincicial , Vírus Sincicial Respiratório Humano , Humanos , Infecções por Vírus Respiratório Sincicial/imunologia , Lactente , Anticorpos Antivirais/imunologia , Reações Cruzadas/imunologia , Vírus Sincicial Respiratório Humano/imunologia , Feminino , Imunidade Humoral/imunologia , Proteínas Virais de Fusão/imunologia , Estudos Longitudinais , Masculino , Imunoglobulina G/imunologia , Imunoglobulina G/sangue , Recém-Nascido , Imunidade Materno-AdquiridaRESUMO
Mycobacterium tuberculosis, the causative agent of tuberculosis (TB), remains a global health burden. While M. tuberculosis is primarily a respiratory pathogen, it can spread to other organs, including the brain and meninges, causing TB meningitis (TBM). However, little is known about the immunological mechanisms that lead to differential disease across organs. Attention has focused on differences in T cell responses in the control of M. tuberculosis in the lungs, but emerging data point to a role for antibodies, as both biomarkers of disease control and as antimicrobial molecules. Given an increasing appreciation for compartmentalized antibody responses across the blood-brain barrier, here we characterized the antibody profiles across the blood and brain compartments in TBM and determined whether M. tuberculosis-specific humoral immune responses differed between M. tuberculosis infection of the lung (pulmonary TB) and TBM. Using a high throughput systems serology approach, we deeply profiled the antibody responses against 10 different M. tuberculosis antigens, including lipoarabinomannan (LAM) and purified protein derivative (PPD), in HIV-negative adults with pulmonary TB (n = 10) versus TBM (n = 60). Antibody studies included analysis of immunoglobulin isotypes (IgG, IgM, IgA) and subclass levels (IgG1-4) and the capacity of M. tuberculosis-specific antibodies to bind to Fc receptors or C1q and to activate innate immune effector functions (complement and natural killer cell activation; monocyte or neutrophil phagocytosis). Machine learning methods were applied to characterize serum and CSF responses in TBM, identify prognostic factors associated with disease severity, and define the key antibody features that distinguish TBM from pulmonary TB. In individuals with TBM, we identified CSF-specific antibody profiles that marked a unique and compartmentalized humoral response against M. tuberculosis, characterized by an enrichment of M. tuberculosis-specific antibodies able to robustly activate complement and drive phagocytosis by monocytes and neutrophils, all of which were associated with milder TBM severity at presentation. Moreover, individuals with TBM exhibited M. tuberculosis-specific antibodies in the serum with an increased capacity to activate phagocytosis by monocytes, compared with individuals with pulmonary TB, despite having lower IgG titres and Fcγ receptor-binding capacity. Collectively, these data point to functionally divergent humoral responses depending on the site of infection (i.e. lungs versus brain) and demonstrate a highly compartmentalized M. tuberculosis-specific antibody response within the CSF in TBM. Moreover, our results suggest that phagocytosis- and complement-mediating antibodies may promote attenuated neuropathology and milder TBM disease.
Assuntos
Mycobacterium tuberculosis , Tuberculose Meníngea , Tuberculose Pulmonar , Humanos , Mycobacterium tuberculosis/imunologia , Masculino , Adulto , Feminino , Tuberculose Meníngea/imunologia , Tuberculose Pulmonar/imunologia , Pessoa de Meia-Idade , Anticorpos Antibacterianos/sangue , Anticorpos Antibacterianos/imunologia , Anticorpos Antibacterianos/líquido cefalorraquidiano , Encéfalo/imunologia , Adulto JovemRESUMO
Coronavirus disease 2019 (COVID-19), which is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), remains a global public health emergency. Although SARS-CoV-2 is primarily a respiratory pathogen, extra-respiratory organs, including the CNS, can also be affected. Neurologic symptoms have been observed not only during acute SARS-CoV-2 infection, but also at distance from respiratory disease, also known as long-COVID or neurological post-acute sequelae of COVID-19 (neuroPASC). The pathogenesis of neuroPASC is not well understood, but hypotheses include SARS-CoV-2-induced immune dysfunctions, hormonal dysregulations and persistence of SARS-CoV-2 reservoirs. In this prospective cohort study, we used a high throughput systems serology approach to dissect the humoral response to SARS-CoV-2 (and other common coronaviruses: 229E, HKU1, NL63 and OC43) in the serum and CSF from 112 infected individuals who developed (n = 18) or did not develop (n = 94) neuroPASC. Unique SARS-CoV-2 humoral profiles were observed in the CSF of neuroPASC compared with serum responses. All antibody isotypes (IgG, IgM, IgA) and subclasses (IgA1-2, IgG1-4) were detected in serum, whereas CSF was characterized by focused IgG1 (and absence of IgM). These data argue in favour of compartmentalized brain-specific responses against SARS-CoV-2 through selective transfer of antibodies from the serum to the CSF across the blood-brain barrier, rather than intrathecal synthesis, where more diversity in antibody classes/subclasses would be expected. Compared to individuals who did not develop post-acute complications following infection, individuals with neuroPASC had similar demographic features (median age 65 versus 66.5 years, respectively, P = 0.55; females 33% versus 44%, P = 0.52) but exhibited attenuated systemic antibody responses against SARS-CoV-2, characterized by decreased capacity to activate antibody-dependent complement deposition (ADCD), NK cell activation (ADNKA) and to bind Fcγ receptors. However, surprisingly, neuroPASC individuals showed significantly expanded antibody responses to other common coronaviruses, including 229E, HKU1, NL63 and OC43. This biased humoral activation across coronaviruses was particularly enriched in neuroPASC individuals with poor outcome, suggesting an 'original antigenic sin' (or immunologic imprinting), where pre-existing immune responses against related viruses shape the response to the current infection, as a key prognostic marker of neuroPASC disease. Overall, these findings point to a pathogenic role for compromised anti-SARS-CoV-2 responses in the CSF, likely resulting in incomplete virus clearance from the brain and persistent neuroinflammation, in the development of post-acute neurologic complications of SARS-CoV-2 infection.
Assuntos
COVID-19 , Feminino , Humanos , Idoso , SARS-CoV-2 , Síndrome de COVID-19 Pós-Aguda , Estudos Prospectivos , Imunoglobulina G , Imunoglobulina MRESUMO
BACKGROUND: Studies have demonstrated the protective role of antibodies against malaria. Young children are known to be particularly vulnerable to malaria, pointing to the evolution of naturally acquired clinical immunity over time. However, whether changes in antibody functionality track with the acquisition of naturally acquired malaria immunity remains incompletely understood. METHODS: Using systems serology, we characterized sporozoite- and merozoite-specific antibody profiles of uninfected Malian children before the malaria season who differed in their ability to control parasitemia and fever following Plasmodium falciparum (Pf) infection. We then assessed the contributions of individual traits to overall clinical outcomes, focusing on the immunodominant sporozoite CSP and merozoite AMA1 and MSP1 antigens. RESULTS: Humoral immunity evolved with age, with an expansion of both magnitude and functional quality, particularly within blood-stage phagocytic antibody activity. Moreover, concerning clinical outcomes postinfection, protected children had higher antibody-dependent neutrophil activity along with higher levels of MSP1-specific IgG3 and IgA and CSP-specific IgG3 and IgG4 prior to the malaria season. CONCLUSIONS: These data point to the natural evolution of functional humoral immunity to Pf with age and highlight particular antibody Fc-effector profiles associated with the control of malaria in children, providing clues for the design of next-generation vaccines or therapeutics.
Assuntos
Malária Falciparum , Malária , Animais , Humanos , Criança , Pré-Escolar , Plasmodium falciparum , Proteína 1 de Superfície de Merozoito , Neutrófilos , Antígenos de Protozoários , Anticorpos Antiprotozoários , Imunidade Adaptativa , Merozoítos , Imunoglobulina G , AutoanticorposRESUMO
BACKGROUND: Although emerging data during the SARS-CoV-2 pandemic have demonstrated robust messenger RNA vaccine-induced immunogenicity across populations, including pregnant and lactating individuals, the rapid waning of vaccine-induced immunity and the emergence of variants of concern motivated the use of messenger RNA vaccine booster doses. Whether all populations, including pregnant and lactating individuals, will mount a comparable response to a booster dose is not known. OBJECTIVE: This study aimed to profile the humoral immune response to a COVID-19 messenger RNA booster dose in a cohort of pregnant, lactating, and nonpregnant age-matched women. STUDY DESIGN: This study characterized the antibody response against ancestral Spike and Omicron in a cohort of 31 pregnant, 12 lactating, and 20 nonpregnant age-matched controls who received a BNT162b2 or messenger RNA-1273 booster dose after primary COVID-19 vaccination. In addition, this study examined the vaccine-induced antibody profiles of 15 maternal-to-cord dyads at delivery. RESULTS: Receiving a booster dose during pregnancy resulted in increased immunoglobulin G1 levels against Omicron Spike (postprimary vaccination vs postbooster dose; P=.03). Pregnant and lactating individuals exhibited equivalent Spike-specific total immunoglobulin G1, immunoglobulin M, and immunoglobulin A levels and neutralizing titers against Omicron compared with nonpregnant women. Subtle differences in Fc receptor binding and antibody subclass profiles were observed in the immune response to a booster dose in pregnant vs nonpregnant individuals. The analysis of maternal and cord antibody profiles at delivery demonstrated equivalent total Spike-specific immunoglobulin G1 in maternal and cord blood, yet higher Spike-specific FcγR3a-binding antibodies in the cord relative to maternal blood (P=.002), consistent with the preferential transfer of highly functional immunoglobulin. Spike-specific immunoglobulin G1 levels in the cord were positively correlated with the time elapsed since receiving the booster dose (Spearman R, .574; P=.035). CONCLUSION: Study data suggested that receiving a booster dose during pregnancy induces a robust Spike-specific humoral immune response, including against Omicron. If boosting occurs in the third trimester of pregnancy, higher Spike-specific cord immunoglobulin G1 levels are achieved with greater time elapsed between receiving the booster and delivery. Receiving a booster dose has the potential to augment maternal and neonatal immunity.
Assuntos
Formação de Anticorpos , COVID-19 , Recém-Nascido , Gravidez , Feminino , Humanos , Vacina BNT162 , Vacinas contra COVID-19 , Lactação , SARS-CoV-2 , Imunoglobulina G , Anticorpos AntiviraisRESUMO
BACKGROUND: Pediatric patients with cancer infected with COVID-19 may be at higher risk of severe disease and may be unable to mount an adequate response to the virus due to compromised immunity secondary to their cancer therapy. PROCEDURE: This study presents immunologic analyses of 20 pediatric patients with cancer, on active chemotherapy or having previously received chemotherapy, and measures their immunoglobulin titers and activation of cellular immunity response to acute SARS-CoV-2 infection and COVID-19 vaccination compared with healthy pediatric controls. RESULTS: Forty-three patients were enrolled, of which 10 were actively receiving chemotherapy, 10 had previously received chemotherapy, and 23 were healthy controls. Pediatric patients with cancer had similar immunoglobulin titers, antibody binding capacity, and effector function assay activity after vaccination against COVID-19 compared with healthy controls, though more variability in response was noted in the cohort actively receiving chemotherapy. Compared with acute infection, vaccination against COVID-19 produced superior immunoglobulin responses, particularly IgA1, IgG1, and IgG3, and elicited superior binding capacity and effector function in children with cancer and healthy controls. CONCLUSIONS: Pediatric patients receiving chemotherapy and those who had previously received chemotherapy had adequate immune activation after both vaccination and acute infection compared to healthy pediatric controls, although there was a demonstrated variability in response for the patients on active chemotherapy. Vaccination against COVID-19 produced superior immune responses compared to acute SARS-CoV-2 infection in pediatric patients with cancer and healthy children, underscoring the importance of vaccination even in previously infected individuals.
Assuntos
COVID-19 , Neoplasias , Humanos , Criança , Vacinas contra COVID-19 , COVID-19/prevenção & controle , SARS-CoV-2 , Neoplasias/terapia , Imunoglobulina A , Imunoglobulina G , Vacinação , Anticorpos Antivirais , Imunidade HumoralRESUMO
Completion of a COVID-19 vaccination series during pregnancy effectively reduces COVID-19 hospitalization among infants less than 6 months of age. The dynamics of transplacental transfer of maternal vaccine-induced antibodies, and their persistence in infants at 2, 6, 9, and 12 months, have implications for new vaccine development and optimal timing of vaccine administration in pregnancy. We evaluated anti-COVID antibody IgG subclass, Fc-receptor binding profile, and activity against wild-type Spike and RBD plus five variants of concern (VOCs) in 153 serum samples from 100 infants. Maternal IgG1 and IgG3 responses persisted in 2- and 6-month infants to a greater extent than the other IgG subclasses, with high persistence of antibodies binding placental neonatal Fc-receptor and FcγR3A. Lowest persistence was observed against the Omicron RBD-specific region. Maternal vaccine timing, placental Fc-receptor binding capabilities, antibody subclass, fetal sex, and VOC all impact the persistence of antibodies in infants through 12 months of age.
RESUMO
Although young children generally experience mild symptoms following infection with SARS-CoV-2, severe acute and long-term complications can occur. SARS-CoV-2 mRNA vaccines elicit robust immunoglobulin profiles in children ages 5 years and older, and in adults, corresponding with substantial protection against hospitalizations and severe disease. Whether similar immune responses and humoral protection can be observed in vaccinated infants and young children, who have a developing and vulnerable immune system, remains poorly understood. To study the impact of mRNA vaccination on the humoral immunity of infant, we use a system serology approach to comprehensively profile antibody responses in a cohort of children ages 6 months to 5 years who were vaccinated with the mRNA-1273 COVID-19 vaccine (25 µg). Responses are compared with vaccinated adults (100 µg), in addition to naturally infected toddlers and young children. Despite their lower vaccine dose, vaccinated toddlers elicit a functional antibody response as strong as adults, with higher antibody-dependent phagocytosis compared to adults, without report of side effects. Moreover, mRNA vaccination is associated with a higher IgG3-dependent humoral profile against SARS-CoV-2 compared to natural infection, supporting that mRNA vaccination is effective at eliciting a robust antibody response in toddlers and young children.
Assuntos
COVID-19 , SARS-CoV-2 , Adulto , Lactente , Humanos , Pré-Escolar , Vacina de mRNA-1273 contra 2019-nCoV , COVID-19/prevenção & controle , Vacinação , Imunidade Humoral , RNA Mensageiro , Anticorpos AntiviraisRESUMO
[This corrects the article DOI: 10.3389/fimmu.2022.856906.].
RESUMO
Introduction: Placental transfer of maternal antibodies is essential for neonatal immunity over the first months of life. In the setting of maternal HIV infection, HIV-exposed uninfected (HEU) infants are at higher risk of developing severe infections, including active tuberculosis (TB). Given our emerging appreciation for the potential role of antibodies in the control of Mycobacterium tuberculosis (Mtb), the bacteria that causes TB, here we aimed to determine whether maternal HIV status altered the quality of Mtb-specific placental antibody transfer. Methods: Antigen-specific antibody systems serology was performed to comprehensively characterize the Mtb-specific humoral immune response in maternal and umbilical cord blood from HIV infected and uninfected pregnant people in Uganda. Results: Significant differences were noted in overall antibody profiles in HIV positive and negative maternal plasma, resulting in heterogeneous transfer of Mtb-specific antibodies. Altered antibody transfer in HIV infected dyads was associated with impaired binding to IgG Fc-receptors, which was directly linked to HIV viral loads and CD4 counts. Conclusions: These results highlight the importance of maternal HIV status on antibody transfer, providing clues related to alterations in transferred maternal immunity that may render HEU infants more vulnerable to TB than their HIV-unexposed peers.
RESUMO
Although young children generally experience mild symptoms following infection with SARS-CoV-2, severe acute and long-term complications can occur. SARS-CoV-2 mRNA vaccines elicit robust immunoglobulin profiles in children ages 5 years and older, and in adults, corresponding with substantial protection against hospitalizations and severe disease. Whether similar immune responses and humoral protection can be observed in vaccinated infants and young children, who have a developing and vulnerable immune system, remains poorly understood. To study the impact of mRNA vaccination on the humoral immunity of infant, we used a system serology approach to comprehensively profile antibody responses in a cohort of children ages 6 months to 5 years who were vaccinated with the mRNA-1273 COVID-19 vaccine (25 µg). Responses were compared with vaccinated adults (100 µg), in addition to naturally infected toddlers and young children. Despite their lower vaccine dose, vaccinated toddlers elicited a stronger functional antibody response than adults, including against variant of concerns (VOCs), without report of side effects. Moreover, mRNA vaccination was associated with a higher IgG3-dependent humoral profile against SARS-CoV-2 compared to natural infection, supporting that mRNA vaccination is effective at eliciting a robust antibody response in toddlers and young children.
RESUMO
Tuberculosis (TB) is among the leading causes of death worldwide from a single infectious agent, second only to COVID-19 in 2020. TB is caused by infection with Mycobacterium tuberculosis (Mtb), that results either in a latent or active form of disease, the latter associated with Mtb spread. In the absence of an effective vaccine, epidemiologic modeling suggests that aggressive treatment of individuals with active TB (ATB) may curb spread. Yet, clinical discrimination between latent (LTB) and ATB remains a challenge. While antibodies are widely used to diagnose many infections, the utility of antibody-based tests to diagnose ATB has only regained significant traction recently. Specifically, recent interest in the humoral immune response to TB has pointed to potential differences in both targeted antigens and antibody features that can discriminate latent and active TB. Here we aimed to integrate these observations and broadly profile the humoral immune response across individuals with LTB or ATB, with and without HIV co-infection, to define the most discriminatory humoral properties and diagnose TB disease more easily. Using 209 Mtb antigens, striking differences in antigen-recognition were observed across latently and actively infected individuals that was modulated by HIV serostatus. However, ATB and LTB could be discriminated, irrespective of HIV-status, based on a combination of both antibody levels and Fc receptor-binding characteristics targeting both well characterized (like lipoarabinomannan, 38 kDa or antigen 85) but also novel Mtb antigens (including Rv1792, Rv1528, Rv2435C or Rv1508). These data reveal new Mtb-specific immunologic markers that can improve the classification of ATB versus LTB.
Assuntos
COVID-19 , Infecções por HIV , Tuberculose Latente , Tuberculose , Anticorpos , Infecções por HIV/complicações , HumanosRESUMO
Despite their distinct etiology, several lines of evidence suggest that innate immunity plays a pivotal role in both juvenile idiopathic arthritis (JIA) and septic arthritis (SA) pathophysiology. Indeed, monocytes and dendritic cells (DC) are involved in the first line of defense against pathogens and play a critical role in initiating and orchestrating the immune response. The aim of this study was to compare the number and phenotype of monocytes and DCs in peripheral blood (PB) and synovial fluid (SF) from patients with JIA and SA to identify specific cell subsets and activation markers associated with pathophysiological mechanisms and that could be used as biomarkers to discriminate both diseases. The proportion of intermediate and non-classical monocytes in the SF and PB, respectively, were significantly higher in JIA than in SA patients. In contrast the proportion of classical monocytes and their absolute numbers were higher in the SF from SA compared with JIA patients. Higher expression of CD64 on non-classical monocyte was observed in PB from SA compared with JIA patients. In SF, higher expression of CD64 on classical and intermediate monocyte as well as higher CD163 expression on intermediate monocytes was observed in SA compared with JIA patients. Moreover, whereas the number of conventional (cDC), plasmacytoid (pDC) and inflammatory (infDC) DCs was comparable between groups in PB, the number of CD141+ cDCs and CD123+ pDCs in the SF was significantly higher in JIA than in SA patients. CD14+ infDCs represented the major DC subset in the SF of both groups with potent activation assessed by high expression of HLA-DR and CD86 and significant up-regulation of HLA-DR expression in SA compared with JIA patients. Finally, higher activation of SF DC subsets was monitored in SA compared with JIA with significant up-regulation of CD86 and PDL2 expression on several DC subsets. Our results show the differential accumulation and activation of innate immune cells between septic and inflammatory arthritis. They strongly indicate that the relative high numbers of CD141+ cDC and CD123+ pDCs in SF are specific for JIA while the over-activation of DC and monocyte subsets is specific for SA.
Assuntos
Artrite Infecciosa/imunologia , Artrite Juvenil/imunologia , Células Dendríticas/imunologia , Monócitos/imunologia , Líquido Sinovial/imunologia , Adolescente , Biomarcadores/análise , Criança , Pré-Escolar , Feminino , Humanos , Imunofenotipagem , Lactente , MasculinoRESUMO
Juvenile idiopathic arthritis (JIA) is a heterogeneous and multifactorial group of chronic arthritis with an onset before the age of 16â¯years. The pathogenesis of this disease is poorly understood, which makes the distinction among subtypes unclear, delays diagnosis and optimal therapeutic management. MicroRNAs (miRNAs) are small non-coding RNAs that play a critical role in the regulation of immune responses. Their expression is tightly controlled to ensure cellular homeostasis and function of innate and adaptive immune cells. Abnormal expression of miRNAs has been associated with the development of many inflammatory and autoimmune diseases. In this review, we gather results published on miRNAs expression profiles in JIA patients with the aim to identify miRNAs that can be used as diagnostic biomarkers and provide information on disease activity and progression. We also focus on miRNAs deregulated in different forms of JIA to shed light on common pathways potentially involved in disease pathophysiology.
Assuntos
Artrite Juvenil/genética , Artrite Juvenil/imunologia , MicroRNAs/imunologia , Animais , HumanosRESUMO
Juvenile idiopathic arthritis (JIA) is the most common chronic inflammatory rheumatism in childhood; microRNAs (miRNAs) have been proposed as diagnostic biomarkers. Although joints are the primary targets for JIA, a synovial fluid-based miRNA signature has never been studied. We aim to identify miRNA biomarkers in JIA by comparing synovial fluid and serum samples from children with JIA and K.kingae septic arthritis (SA). With next-generation high-throughput sequencing, we measured the absolute levels of 2083 miRNAs in synovial fluid and serum from an exploratory cohort of children and validated differentially expressed miRNAs in a replication study by using RT-qPCR. We identified a 19-miRNA signature only in synovial fluid samples that was significantly deregulated, with at least 2-fold change in expression, in JIA versus SA (p < 0.01). The combination of miR-6764-5p, miR-155, and miR-146a-5p expression in synovial fluid yielded an area under the receiver operating characteristic curve of 1 (95% CI 0.978 to 1), thereby perfectly differentiating JIA from SA in children. We propose, for the first time, a synovial fluid-specific miRNA signature for JIA and associated signaling pathways that may indicate potential biomarkers to assist in the classification and differential diagnosis of JIA and help in understanding JIA pathogenesis.