RESUMO
Over the last decade, perspectives on the complement system in the context of cancer have shifted, with complement proteins now implicated in many of the hallmarks of cancer. Systemically, the generation of complement anaphylatoxin C5a, the most potent inflammatory mediator of the cascade, occurs following convertase-mediated cleavage of complement component C5. In a recent manuscript, Ding et al., propose that in colorectal cancer cells, C5 cleavage can occur intracellularly and in a convertase-independent manner, identifying cathepsin D as an enzyme capable of cleaving C5 into C5a [1]. Intracellular C5a is functional and promotes ß-catenin stabilisation via the assembly of a KCTD5/cullin3/Roc-1 complex. Importantly, the blockade of C5aR1 prevents tumorigenesis. This study adds to a growing body of evidence indicating that complement proteins, previously thought to primarily have extracellular or membrane-bound functions, also have important intracellular roles.
Assuntos
Complemento C5 , Proteínas do Sistema Complemento , Humanos , Proteínas do Sistema Complemento/metabolismo , Complemento C5/metabolismo , Complemento C5a/metabolismo , Canais de PotássioRESUMO
Resistance to neoadjuvant chemoradiation therapy (neo-CRT) is a significant clinical problem in the treatment of locally advanced rectal cancer. Identification of novel therapeutic targets and biomarkers predicting therapeutic response is required to improve patient outcomes. Increasing evidence supports a role for the complement system in resistance to anti-cancer therapy. In this study, increased expression of complement effectors C3 and C5 and increased production of anaphylatoxins, C3a and C5a, was observed in radioresistant rectal cancer cells. Modulation of the central complement effector, C3, was demonstrated to functionally alter the radioresponse, with C3 overexpression significantly enhancing radioresistance, whilst C3 inhibition significantly increased sensitivity to a clinically-relevant dose of radiation. Inhibition of C3 was demonstrated to increase DNA damage and alter cell cycle distribution, mediating a shift towards a radiosensitive cell cycle phenotype suggesting a role for C3 in reprogramming of the tumoural radioresponse. Expression of the complement effectors C3 and C5 was significantly increased in human rectal tumour tissue, as was expression of CFB, a component of the alternative pathway of activation. Elevated levels of C3a and C5b-9 in pre-treatment sera from rectal cancer patients was associated with subsequent poor responses to neo-CRT and poorer survival. Together these data demonstrate a role for complement in the radioresistance of rectal cancer and identify key complement components as potential biomarkers predicting response to neo-CRT and outcome in rectal cancer.
Assuntos
Tolerância a Radiação , Neoplasias Retais , Humanos , Neoplasias Retais/patologia , Neoplasias Retais/radioterapia , Neoplasias Retais/metabolismo , Neoplasias Retais/genética , Linhagem Celular Tumoral , Complemento C3/metabolismo , Terapia Neoadjuvante/métodos , Dano ao DNA , Complemento C3a/metabolismo , Ciclo Celular , Quimiorradioterapia AdjuvanteRESUMO
Resistance to neoadjuvant chemoradiation therapy, is a major challenge in the management of rectal cancer. Increasing evidence supports a role for altered energy metabolism in the resistance of tumours to anti-cancer therapy, suggesting that targeting tumour metabolism may have potential as a novel therapeutic strategy to boost treatment response. In this study, the impact of metformin on the radiosensitivity of colorectal cancer cells, and the potential mechanisms of action of metformin-mediated radiosensitisation were investigated. Metformin treatment was demonstrated to significantly radiosensitise both radiosensitive and radioresistant colorectal cancer cells in vitro. Transcriptomic and functional analysis demonstrated metformin-mediated alterations to energy metabolism, mitochondrial function, cell cycle distribution and progression, cell death and antioxidant levels in colorectal cancer cells. Using ex vivo models, metformin treatment significantly inhibited oxidative phosphorylation and glycolysis in treatment naïve rectal cancer biopsies, without affecting the real-time metabolic profile of non-cancer rectal tissue. Importantly, metformin treatment differentially altered the protein secretome of rectal cancer tissue when compared to non-cancer rectal tissue. Together these data highlight the potential utility of metformin as an anti-metabolic radiosensitiser in rectal cancer.
RESUMO
Chemotherapy upregulates immune checkpoint (IC) expression on the surface of tumour cells and IC-intrinsic signalling confers a survival advantage against chemotherapy in several cancer-types including oesophageal adenocarcinoma (OAC). However, the signalling pathways mediating chemotherapy-induced IC upregulation and the mechanisms employed by ICs to protect OAC cells against chemotherapy remain unknown. Longitudinal profiling revealed that FLOT-induced IC upregulation on OE33 OAC cells was sustained for up to 3 weeks post-treatment, returning to baseline upon complete tumour cell recovery. Pro-survival MEK signalling mediated FLOT-induced upregulation of PD-L1, TIM-3, LAG-3 and A2aR on OAC cells promoting a more immune-resistant phenotype. Single agent PD-1, PD-L1 and A2aR blockade decreased OAC cell viability, proliferation and mediated apoptosis. Mechanistic insights demonstrated that blockade of the PD-1 axis decreased stem-like marker ALDH and expression of DNA repair genes. Importantly, combining single agent PD-1, PD-L1 and A2aR blockade with FLOT enhanced cytotoxicity in OAC cells. These findings reveal novel mechanistic insights into the immune-independent functions of IC-intrinsic signalling in OAC cells with important clinical implications for boosting the efficacy of the first-line FLOT chemotherapy regimen in OAC in combination with ICB, to not only boost anti-tumour immunity but also to suppress IC-mediated promotion of key hallmarks of cancer that drive tumour progression.
Assuntos
Adenocarcinoma , Antígeno B7-H1 , Neoplasias Esofágicas , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Antígeno B7-H1/antagonistas & inibidores , Antígeno B7-H1/metabolismo , Sinergismo Farmacológico , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/patologia , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Regulação para CimaRESUMO
Pancreatic ductal adenocarcinoma (PDAC) has a 5-year survival rate below 5%. Carbohydrate antigen 19-9 (CA19-9) is the most commonly used blood-based biomarker for PDAC in current clinical practice, despite having been shown repeatedly to be inaccurate and have poor diagnostic performance. This review aims to assess the reported diagnostic accuracy of all blood-based biomarkers investigated to date in PDAC, by directly comparing individual biomarkers and multi-biomarker panels, both containing CA19-9 and not (novel). A systematic review was conducted in accordance with PRISMA standards in July 2020. Individualized search strategies for three academic databases identified 5,885 studies between the years 1973 and 2020. After two rounds of screening, 250 studies were included. Data were extracted and assessed for bias. A multivariate three-level meta-analysis with subgroup moderators was run in R using AUC values as effect size. On the basis of this model, the pooled AUC value for all multi-biomarker panels (AUC = 0.898; 95% confidence interval (CI): 0.88-0.91) was significantly higher than all single biomarkers (AUC = 0.803; 95% CI: 0.78-0.83; P < 0.0001). The pooled AUC value for CA19-9 alone was significantly lower compared with the multi-biomarker panels containing CA19-9 (P < 0.0001). For the novel biomarkers, the pooled AUC for single biomarkers was also significantly lower compared with multi-biomarker panels (P < 0.0001). Novel biomarkers that have been repeatedly examined across the literature, such as TIMP-1, CEA, and CA125, are highlighted as promising. These results suggest that CA19-9 may be best used as an addition to a panel of biomarkers rather than alone, and that multi-biomarker panels generate the most robust results in blood-based PDAC diagnosis. Significance: In a systematic review and three-level multivariate meta-analysis, it is shown for the first time that blood-based multi-biomarker panels for the diagnosis of PDAC exhibit superior performance in comparison with single biomarkers. CA19-9 is demonstrated to have limited utility alone, and to perform poorly in patient control cohorts of both healthy and benign individuals. Multi-biomarker panels containing CA19-9 produce the best diagnostic performance overall.
Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Antígeno CA-19-9 , Biomarcadores Tumorais , Estudos de Casos e Controles , Neoplasias Pancreáticas/diagnóstico , Carcinoma Ductal Pancreático/diagnóstico , Neoplasias PancreáticasRESUMO
In recent years, our knowledge of the complement system beyond innate immunity has progressed significantly. A modern understanding is that the complement system has a multifaceted role in malignancy, impacting carcinogenesis, the acquisition of a metastatic phenotype and response to therapies. The ability of local immune cells to produce and respond to complement components has provided valuable insights into their regulation, and the subsequent remodeling of the tumour microenvironment. These novel discoveries have advanced our understanding of the immunosuppressive mechanisms supporting tumour growth and uncovered potential therapeutic targets. This review discusses the current understanding of complement in cancer, outlining both direct and immune cell-mediated roles. The role of complement in response to therapies such as chemotherapy, radiation and immunotherapy is also presented. While complement activities are largely context and cancer type-dependent, it is evident that promising therapeutic avenues have been identified, in particular in combination therapies.
RESUMO
BACKGROUND: Limited data have been reported on bariatric surgery within a large, high-volume regional multicenter integrated healthcare delivery system. OBJECTIVES: Review clinical characteristics and short- and intermediate-term outcomes and adverse events from a bariatric surgery program within an integrated healthcare delivery system. SETTING: Single high-volume, multicenter regional integrated healthcare delivery system. METHODS: Adult patients who underwent primary bariatric surgery during 2010-2011 were reviewed. Clinical characteristics, outcomes, and weight loss results were extracted from the electronic medical record. RESULTS: A total of 2399 patients were identified within the study period. The 30-day rates of clinical outcomes for Roux-en-Y gastric bypass (RYGB; n = 1313) and sleeve gastrectomy (SG; n = 1018) were 2.9% for readmission, 3.0% for major complications, .8% for reoperation, and 0% for mortality. One-year and 2-year weight loss results were as follows: percent weight loss (%WL) was 31.4 (±SD 8.5) and 34.2±12.0% for SG and 34.1±9.3 and 39.1±11.9 for RYGB; percent excess weight loss (%EBWL) was 64.2±18.0 and 69.8±23.7 for SG and 68.0±19.3 and 77.8±23.7 for RYGB; percent excess body mass index loss (%EBMIL) was 72.9±21.0 and 77.7±22.4 for SG and 76.6±22.1% and 85.6±21.6 for RYGB. Follow-up for each procedure at 1 year was 76% for SG (n = 778) and 80% for RYGB (n = 1052) and at 2 years was 65% for SG (n = 659) and 67% for RYGB (n = 875). CONCLUSIONS: A large regional high-volume multicenter bariatric program within an integrated healthcare delivery system can produce excellent short-term results with low rates of short- and intermediate-term adverse outcomes.