RESUMO
Immunodeficient mice bearing human immune systems, or "humanized" chimeric mice, are widely used in basic research, along with the preclinical stages of drug development. Nonobese diabetic-severe combined immunodeficiency (NOD-SCID) IL2Rγnull (NSG) mice expressing human stem cell factor, granulocyte-macrophage colony stimulating factor, and interleukin-3 (NSG-SGM3) support robust development of human myeloid cells and T cells but have reduced longevity due to the development of fatal hemophagocytic lymphohistiocytosis (HLH). Here, we describe an optimized protocol for development of human immune chimerism in NSG-SGM3 mice. We demonstrate that efficient human CD45+ reconstitution can be achieved and HLH delayed by engraftment of neonatal NSG-SGM3 with low numbers of human umbilical cord-derived CD34+ hematopoietic stem cells in the absence of preconditioning irradiation.
Assuntos
Transplante de Células-Tronco Hematopoéticas , Linfo-Histiocitose Hemofagocítica , Camundongos , Humanos , Animais , Recém-Nascido , Linfo-Histiocitose Hemofagocítica/terapia , Camundongos Endogâmicos NOD , Camundongos SCID , Células-Tronco Hematopoéticas , Antígenos CD34 , Linfócitos TRESUMO
BACKGROUND: The conventional type 1 dendritic cell subset (cDC1) is indispensable for tumor immune responses and the efficacy of immune checkpoint inhibitor (ICI) therapies in animal models but little is known about the role of the human CD141+ DC cDC1 equivalent in patients with melanoma. METHODS: We developed a flow cytometry assay to quantify and characterize human blood DC subsets in healthy donors and patients with stage 3 and stage 4 metastatic melanoma. To examine whether harnessing CD141+ DCs could improve responses to ICIs in human melanoma, we developed a humanized mouse model by engrafting immunodeficient NSG-SGM3 mice with human CD34+ hematopoietic stem cells (HSCs) from umbilical cord blood followed by transplantation of a human melanoma cell line and treatment with anti-programmed cell death protein-1 (anti-PD-1). RESULTS: Blood CD141+ DC numbers were significantly reduced in patients with stage 4 melanoma compared with healthy controls. Moreover, CD141+ DCs in patients with melanoma were selectively impaired in their ability to upregulate CD83 expression after stimulation with toll-like receptor 3 (TLR3) and TLR7/8 agonists ex vivo. Although DC numbers did not correlate with responses to anti-PD-1 and/or anti-cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) ICIs, their numbers and capacity to upregulate CD83 declined further during treatment in non-responding patients. Treatment with anti-PD-1 was ineffective at controlling tumor growth in humanized mice but efficacy was enhanced by indirectly expanding and activating DCs in vivo with fms-like tyrosine kinase-3 ligand (Flt3L) and a TLR3 agonist. Moreover, intratumoral injections of CD141+ DCs resulted in reduced tumor growth when combined with anti-PD-1 treatment. CONCLUSIONS: These data illustrate quantitative and qualitative impairments in circulating CD141+ DCs in patients with advanced melanoma and that increasing CD141+ DC number and function is an attractive strategy to enhance immunogenicity and response rates to ICIs.
Assuntos
Anticorpos Monoclonais Humanizados/farmacologia , Células Dendríticas/transplante , Transplante de Células-Tronco Hematopoéticas , Inibidores de Checkpoint Imunológico/farmacologia , Imunoterapia Adotiva , Melanoma/terapia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Neoplasias Cutâneas/terapia , Trombomodulina/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Antígenos CD34/metabolismo , Estudos de Casos e Controles , Linhagem Celular Tumoral , Terapia Combinada , Citocinas/sangue , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Feminino , Células-Tronco Hematopoéticas/imunologia , Células-Tronco Hematopoéticas/metabolismo , Humanos , Masculino , Melanoma/imunologia , Melanoma/metabolismo , Melanoma/patologia , Camundongos Endogâmicos NOD , Camundongos SCID , Pessoa de Meia-Idade , Receptor de Morte Celular Programada 1/metabolismo , Neoplasias Cutâneas/imunologia , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Leukemias are clonal proliferative disorders arising from immature leukocytes in the bone marrow. While the advent of targeted therapies has improved survival in certain subtypes, relapse after initial therapy is a major problem. Dendritic cell (DC) vaccination has the potential to induce tumor-specific T cells providing long-lasting, anti-tumor immunity. This approach has demonstrated safety but limited clinical success until recently, as DC vaccination faces several barriers in both solid and hematological malignancies. Importantly, vaccine-mediated stimulation of protective immune responses is hindered by the aberrant production of immunosuppressive factors by cancer cells which impede both DC and T cell function. Leukemias present the additional challenge of severely disrupted hematopoiesis owing to both cytogenic defects in hematopoietic progenitors and an abnormal hematopoietic stem cell niche in the bone marrow; these factors accentuate systemic immunosuppression and DC malfunction. Despite these obstacles, several recent clinical trials have caused great excitement by extending survival in Acute Myeloid Leukemia (AML) patients through DC vaccination. Here, we review the phenotype and functional capacity of DCs in leukemia and approaches to harness DCs in leukemia patients. We describe the recent clinical successes in AML and detail the multiple new strategies that might enhance prognosis in AML and other leukemias.