Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Commun Biol ; 4(1): 1140, 2021 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-34588600

RESUMO

Parkinson's disease (PD) is a chronic neurological disorder associated with the misfolding of alpha-synuclein (α-syn) into aggregates within nerve cells that contribute to their neurodegeneration. Recent evidence suggests α-syn aggregation may begin in the gut and travel to the brain along the vagus nerve, with microbes potentially a trigger initiating α-syn misfolding. However, the effects α-syn alterations on the gut virome have not been investigated. In this study, we show longitudinal faecal virome changes in rats administered either monomeric or preformed fibrils (PFF) of α-syn directly into their enteric nervous system. Differential changes in rat viromes were observed when comparing monomeric and PFF α-syn, with alterations compounded by the addition of LPS. Changes in rat faecal viromes were observed after one month and did not resolve within the study's five-month observational period. These results suggest that virome alterations may be reactive to host α-syn changes that are associated with PD development.


Assuntos
Fezes/virologia , Doença de Parkinson/etiologia , Viroma , alfa-Sinucleína/metabolismo , Animais , Masculino , Doença de Parkinson/virologia , Ratos , Ratos Sprague-Dawley
2.
Neurogastroenterol Motil ; 32(1): e13726, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31576631

RESUMO

BACKGROUND: A hallmark feature of Parkinson's disease (PD) is the build-up of α-synuclein protein aggregates throughout the brain; however α-synuclein is also expressed in enteric neurons. Gastrointestinal (GI) symptoms and pathology are frequently reported in PD, including constipation, increased intestinal permeability, glial pathology, and alterations to gut microbiota composition. α-synuclein can propagate through neuronal systems but the site of origin of α-synuclein pathology, whether it be the gut or the brain, is still unknown. Physical exercise is associated with alleviating symptoms of PD and with altering the composition of the gut microbiota. METHODS: This study investigated the effects of bilateral nigral injection of adeno-associated virus (AAV)-α-synuclein on enteric neurons, glia and neurochemistry, the gut microbiome, and bile acid metabolism in rats, some of whom were exposed to voluntary exercise. KEY RESULTS: Nigral overexpression of α-synuclein resulted in significant neuronal loss in the ileal submucosal plexus with no change in enteric glia. In contrast, the myenteric plexus showed a significant increase in glial expression, while neuronal numbers were maintained. Concomitant alterations were observed in the gut microbiome and related bile acid metabolism. Voluntary running protected against neuronal loss, increased enteric glial expression, and modified gut microbiome composition in the brain-injected AAV-α-synuclein PD model. CONCLUSIONS AND INFERENCES: These results show that developing nigral α-synuclein pathology in this PD model exerts significant alterations on the enteric nervous system (ENS) and gut microbiome that are receptive to modification by exercise. This highlights brain to gut communication as an important mechanism in PD pathology.


Assuntos
Sistema Nervoso Entérico/patologia , Microbioma Gastrointestinal , Transtornos Parkinsonianos , Substância Negra/metabolismo , alfa-Sinucleína/toxicidade , Animais , Vetores Genéticos , Humanos , Injeções Intraventriculares , Masculino , Ratos , Ratos Sprague-Dawley , Ratos Transgênicos , Transfecção , alfa-Sinucleína/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA