Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
1.
Environ Sci Technol ; 56(8): 4749-4775, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35357187

RESUMO

Several problems associated with the presence of lipids in wastewater treatment plants are usually overcome by removing them ahead of the biological treatment. However, because of their high energy content, waste lipids are interesting yet challenging pollutants in anaerobic wastewater treatment and codigestion processes. The maximal amount of waste lipids that can be sustainably accommodated, and effectively converted to methane in anaerobic reactors, is limited by several problems including adsorption, sludge flotation, washout, and inhibition. These difficulties can be circumvented by appropriate feeding, mixing, and solids separation strategies, provided by suitable reactor technology and operation. In recent years, membrane bioreactors and flotation-based bioreactors have been developed to treat lipid-rich wastewater. In parallel, the increasing knowledge on the diversity of complex microbial communities in anaerobic sludge, and on interspecies microbial interactions, contributed to extend the knowledge and to understand more precisely the limits and constraints influencing the anaerobic biodegradation of lipids in anaerobic reactors. This critical review discusses the most important principles underpinning the degradation process and recent key discoveries and outlines the current knowledge coupling fundamental and applied aspects. A critical assessment of knowledge gaps in the field is also presented by integrating sectorial perspectives of academic researchers and of prominent developers of anaerobic technology.


Assuntos
Esgotos , Eliminação de Resíduos Líquidos , Anaerobiose , Reatores Biológicos , Lipídeos , Metano/metabolismo , Águas Residuárias
2.
J Environ Manage ; 299: 113627, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34467857

RESUMO

Animal waste contains high numbers of microorganisms and therefore can present a potential biological threat to human health. During episodic rainfall events resulting in runoff, microorganisms in the waste and soil may migrate into surface runoff, contaminating surface water resources. A probabilistic human exposure (HE) model was created to determine exposure to faecal indicator bacteria (FIB): total coliforms (TC), E. coli and enterococci following application of bio-based fertiliser (dairy cattle slurry, digestate) to grassland; using a combination of experimental field results and literature-based data. This step was followed by a quantitative microbial risk assessment (QMRA) model for pathogenic E. coli based on a literature-based dose-response model. The results showed that the maximum daily HE (HEdaily) is associated with E. coli for unprocessed slurry (treatment T1) on day 1, the worst-case scenario where the simulated mean HEdaily was calculated as 2.84 CFU day -1. The results indicate that the overall annual probability of risk (Pannual) of illness from E. coli is very low or low based on the WHO safe-limit of Pannual as 10 -6. In the worst-case scenario, a moderate risk was estimated with simulated mean Pannual as 1.0 × 10 -5. Unpasteurised digestate application showed low risk on day 1 and 2 (1.651 × 10 -6, 1.167 × 10 -6, respectively). Pasteurised digestate showed very low risk in all scenarios. These results support the restriction imposed on applying bio-based fertiliser if there is any rain forecast within 48 h from the application time. This study proposes a future extension of the probabilistic model to include time, intensity, discharge, and distance-dependant dilution factor. The information generated from this model can help policymakers ensure the safety of surface water sources through the quality monitoring of FIB levels in bio-based fertiliser.


Assuntos
Escherichia coli , Fertilizantes , Pradaria , Microbiologia da Água , Animais , Bactérias , Bovinos , Exposição Ambiental , Fezes/microbiologia , Fertilizantes/microbiologia , Humanos , Medição de Risco
3.
J Environ Manage ; 196: 476-486, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28343049

RESUMO

Over three million tonnes of spent mushroom substrate (SMS) are produced in Europe every year as a by-product of the cultivation of Agaricus bisporus. The management of SMS has become an increasing challenge for the mushroom production industry, and finding environmentally and economically sustainable solutions for this organic residue is, therefore, highly desirable. Due to its physical properties and nutrient content, SMS has great potential to be employed in agricultural and horticultural sectors, and further contribute to reduce the use of non-renewable resources, such as peat. However, SMS is often regarded as not being stable and/or mature, which hampers its wide use for crop production. Here, we demonstrate the stabilisation of SMS and its subsequent use as organic fertiliser and partial peat replacement in horticulture. The stabilisation was performed in a laboratory-scale composting system, with controlled temperature and aeration. Physical and chemical parameters were monitored during composting and provided information on the progress of the process. Water soluble carbohydrates (WSC) content was found to be the most reliable parameter to predict SMS stability. In situ oxygen consumption indicated the main composting phases, reflecting major changes in microbial activity. The structure of the bacterial community was also found to be a potential predictor of stability, as the compositional changes followed the composting progress. By contrast, the fungal community did not present clear successional process along the experiment. Maturity and quality of the stabilised SMS were assessed in a horticultural growing trial. When used as the sole fertiliser source, SMS was able to support Lolium multiflorum (Italian ryegrass) growth and significantly improved grass yield with a concentration-dependent response, increasing grass biomass up to 300%, when compared to the untreated control. In summary, the results indicated that the method employed was efficient in generating a stable and mature product, which has a great potential to be applied in horticulture. This study represents a step forward in the management of SMS residue, and also provides an alternative to reduce the use of peat in horticulture, alleviating environmental impacts to peatland ecosystems.


Assuntos
Agaricales , Agricultura , Fertilizantes , Europa (Continente) , Solo
4.
J Sci Food Agric ; 97(3): 719-723, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27553887

RESUMO

The process of anaerobic digestion (AD) is valued as a carbon-neutral energy source, while simultaneously treating organic waste, making it safer for disposal or use as a fertilizer on agricultural land. The AD process in many European nations, such as Germany, has grown from use of small, localized digesters to the operation of large-scale treatment facilities, which contribute significantly to national renewable energy quotas. However, these large AD plants are costly to run and demand intensive farming of energy crops for feedstock. Current policy in Germany has transitioned to support funding for smaller digesters, while also limiting the use of energy crops. AD within Ireland, as a new technology, is affected by ambiguous governmental policies concerning waste and energy. A clear governmental strategy supporting on-site AD processing of agricultural waste will significantly reduce Ireland's carbon footprint, improve the safety and bioavailability of agricultural waste, and provide an indigenous renewable energy source. © 2016 Society of Chemical Industry.


Assuntos
Fontes de Energia Bioelétrica , Bactérias Anaeróbias Gram-Negativas/metabolismo , Bactérias Gram-Positivas/metabolismo , Resíduos Industriais , Política Pública , Energia Renovável , Fontes de Energia Bioelétrica/efeitos adversos , Fontes de Energia Bioelétrica/história , Fontes de Energia Bioelétrica/microbiologia , Fontes de Energia Bioelétrica/normas , Pegada de Carbono/economia , Pegada de Carbono/legislação & jurisprudência , Pegada de Carbono/normas , Conservação dos Recursos Naturais/economia , Conservação dos Recursos Naturais/história , Conservação dos Recursos Naturais/legislação & jurisprudência , Produção Agrícola/economia , Produtos Agrícolas/economia , Produtos Agrícolas/crescimento & desenvolvimento , Fermentação , Alemanha , Bactérias Anaeróbias Gram-Negativas/crescimento & desenvolvimento , Bactérias Gram-Positivas/crescimento & desenvolvimento , Fidelidade a Diretrizes/tendências , História do Século XX , História do Século XXI , Humanos , Resíduos Industriais/economia , Irlanda , Política Pública/economia , Política Pública/história , Política Pública/tendências , Energia Renovável/efeitos adversos , Energia Renovável/economia , Energia Renovável/história , Energia Renovável/normas , Gestão da Segurança/economia , Gestão da Segurança/história , Gestão da Segurança/legislação & jurisprudência , Gestão da Segurança/normas
6.
Appl Microbiol Biotechnol ; 98(20): 8737-50, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24946864

RESUMO

The application of low-temperature (10 °C) anaerobic digestion (LtAD) for the treatment of complex dairy-based wastewater in an inverted fluidised bed (IFB) reactor was investigated. Inadequate mixing intensity provoked poor hydrolysis of the substrate (mostly protein), which resulted in low chemical oxygen demand (COD) removal efficiency throughout the trial, averaging ~69 % at the best operational period. Overgrowth of the attached biomass to the support particles (Extendospheres) induced bed stratification by provoking agglutination of the particles and supporting their washout by sedimentation, which contributed to unstable bioprocess performance at the organic loading rates (OLRs) between 0.5 and 5 kg COD m(-3) day(-1). An applied OLR above 2 kg COD m(-3) day(-1) additionally promoted acidification and strongly influenced the microbial composition and dynamics. Hydrogenotrophic methanogens appeared to be the mostly affected group by the Extendospheres particle washout as a decrease in their abundance was observed by quantitative PCR analysis towards the end of the trial, although the specific methanogenic activity and maximum substrate utilisation rate on H2/CO2 indicated high metabolic activity and preference towards hydrogenotrophic methanogenesis of the reactor biomass at this stage. The bacterial community in the bioreactor monitored via denaturing gradient gel electrophoresis (DGGE) also suggested an influence of OLR stress on bacterial community structure and population dynamics. The data presented in this work can provide useful information in future optimisation of fluidised reactors intended for digestion of complex industrial wastewaters during LtAD.


Assuntos
Reatores Biológicos/microbiologia , Metano/metabolismo , Águas Residuárias/microbiologia , Anaerobiose , Bactérias/classificação , Bactérias/genética , Biota , Dióxido de Carbono/metabolismo , Eletroforese em Gel de Gradiente Desnaturante , Indústria Alimentícia , Hidrogênio/metabolismo , Hidrólise , Eliminação de Resíduos de Serviços de Saúde , Reação em Cadeia da Polimerase , Temperatura , Purificação da Água/métodos
7.
Appl Microbiol Biotechnol ; 98(2): 611-20, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24162086

RESUMO

A two step biological process for the conversion of grass biomass to the biodegradable polymer medium chain length polyhydroxyalkanoate (mcl-PHA) was achieved through the use of anaerobic and aerobic microbial processes. Anaerobic digestion (mixed culture) of ensiled grass was achieved with a recirculated leach bed bioreactor resulting in the production of a leachate, containing 15.3 g/l of volatile fatty acids (VFAs) ranging from acetic to valeric acid with butyric acid predominating (12.8 g/l). The VFA mixture was concentrated to 732.5 g/l with a 93.3 % yield of butyric acid (643.9 g/l). Three individual Pseudomonas putida strains, KT2440, CA-3 and GO16 (single pure cultures), differed in their ability to grow and accumulate PHA from VFAs. P. putida CA-3 achieved the highest biomass and PHA on average with individual fatty acids, exhibited the greatest tolerance to higher concentrations of butyric acid (up to 40 mM) compared to the other strains and exhibited a maximum growth rate (µMAX = 0.45 h⁻¹). Based on these observations P. putida CA-3 was chosen as the test strain with the concentrated VFA mixture derived from the AD leachate. P. putida CA-3 achieved 1.56 g of biomass/l and accumulated 39 % of the cell dry weight as PHA (nitrogen limitation) in shake flasks. The PHA was composed predominantly of 3-hydroxydecanoic acid (>65 mol%).


Assuntos
Reatores Biológicos , Ácidos Graxos Voláteis/metabolismo , Poaceae/metabolismo , Poli-Hidroxialcanoatos/metabolismo , Pseudomonas putida/metabolismo
8.
Water Sci Technol ; 70(4): 634-41, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25116492

RESUMO

One of the key threats to groundwater and surface water quality in Ireland is the impact of poorly designed, constructed or maintained on-site wastewater treatment systems. An extensive study was carried out to quantify the impact of existing sites on water quality. Six existing sites, consisting of a traditional septic tank and soakaway system, located in various ranges of subsoil permeabilities were identified and monitored to determine how well they function under varying subsoil and weather conditions. The preliminary results of the chemical and microbiological pollutant attenuation in the subsoil of the systems have been assessed and treatment performance evaluated, as well as impact on local surface water and groundwater quality. The source of any faecal contamination detected in groundwater, nearby surface water and effluent samples was confirmed by microbial source tracking. From this, it can be seen that the transport and treatment of percolate vary greatly depending on the permeability and composition of the subsoil.


Assuntos
Água Doce/microbiologia , Água Subterrânea/microbiologia , Eliminação de Resíduos Líquidos/instrumentação , Qualidade da Água , Bactérias/genética , DNA Bacteriano/análise , Fezes/microbiologia , Irlanda , Solo/química , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/microbiologia
9.
J Anim Sci ; 1022024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38206107

RESUMO

Research into the potential use of various dietary feed supplements to reduce methane (CH4) production from ruminants has proliferated in recent years. In this study, two 8-wk long experiments were conducted with mature ewes and incorporated the use of a variety of natural dietary feed supplements offered either independently or in combination. Both experiments followed a randomized complete block design. Ewes were offered a basal diet in the form of ad libitum access to grass silage supplemented with 0.5 kg concentrates/ewe/d. The entire daily dietary concentrate allocation, incorporating the respective feed supplement, was offered each morning, and this was followed by the daily silage allocation. In experiment 1, the experimental diets contained 1) no supplementation (CON), 2) Ascophyllum nodosum (SW), 3) A. nodosum extract (EX1), 4) a blend of garlic and citrus extracts (GAR), and 5) a blend of essential oils (EO). In experiment 2, the experimental diets contained 1) no supplementation (CON), 2) A. nodosum extract (EX2), 3) soya oil (SO), and 4) a combination of EX2 and SO (EXSO). Twenty ewes per treatment were individually housed during both experiments. Methane was measured using portable accumulation chambers. Rumen fluid was collected at the end of both experiments for subsequent volatile fatty acid (VFA) and ammonia analyses. Data were analyzed using mixed models ANOVA (PROC MIXED, SAS v9.4). Statistically significant differences between treatment means were considered when P < 0.05. Dry matter intake was not affected by diet in either experiment (P > 0.05). Ewes offered EO tended to have an increased feed:gain ratio relative to CON (P < 0.10) and SO tended to increase the average daily gain (P < 0.10) which resulted in animals having a higher final body weight (P < 0.05) than CON. Ewes offered EX1 and SO emitted 9% less CH4 g/d than CON. The only dietary treatment to have an effect on rumen fermentation variables relative to CON was SW, which enhanced total VFA production (P < 0.05). In conclusion, the A. nodosum extract had inconsistent results on CH4 emissions whereby EX1 reduced CH4 g/d while EX2 had no mitigating effect on CH4 production, likely due to the differences in PT content reported for EX1 and EX2. SO was the only dietary feed supplement assessed in the current study that enhanced animal performance whilst mitigating daily CH4 production.


Reducing methane emissions from agriculture is vital to minimize the effects of global warming and to meet greenhouse gas reduction targets set by EU policy. In this experiment, a range of natural feed supplements were offered to mature ewes through the concentrated portion of their diet. Soya oil and brown seaweed extract reduced daily methane emissions by 9% when offered independently of each other; however, no reduction in methane was observed when combined. Additionally, inclusion of soya oil improved animal weight gain. Results from the current experiment may contribute to the development of a targeted dietary strategy to reduce methane emissions from livestock.


Assuntos
Dieta , Metano , Ovinos , Animais , Feminino , Metano/metabolismo , Dieta/veterinária , Suplementos Nutricionais/análise , Ruminantes , Silagem/análise , Ácidos Graxos Voláteis/metabolismo , Rúmen/metabolismo , Óleo de Soja/metabolismo , Extratos Vegetais , Fermentação , Ração Animal/análise , Lactação , Digestão
10.
Sci Total Environ ; 926: 171808, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38508273

RESUMO

Enteric methane (CH4) produced by ruminant livestock is a potent greenhouse gas and represents significant energy loss for the animal. The novel application of oxidising compounds as antimethanogenic agents with future potential to be included in ruminant feeds, was assessed across two separate experiments in this study. Low concentrations of oxidising agents, namely urea hydrogen peroxide (UHP) with and without potassium iodide (KI), and magnesium peroxide (MgO2), were investigated for their effects on CH4 production, total gas production (TGP), volatile fatty acid (VFA) profiles, and nutrient disappearance in vitro using the rumen simulation technique. In both experiments, the in vitro diet consisted of 50:50 grass silage:concentrate on a dry matter basis. Treatment concentrations were based on the amount of oxygen delivered and expressed in terms of fold concentration. In Experiment 1, four treatments were tested (Control, 1× UHP + KI, 1× UHP, and 0.5× UHP + KI), and six treatments were assessed in Experiment 2 (Control, 0.5× UHP + KI, 0.5× UHP, 0.25× UHP + KI, 0.25× UHP, and 0.12× MgO2). All treatments in this study had a reducing effect on CH4 parameters. A dose-dependent reduction of TGP and CH4 parameters was observed, where treatments delivering higher levels of oxygen resulted in greater CH4 suppression. 1× UHP + KI reduced TGP by 28 % (p = 0.611), CH4% by 64 % (p = 0.075) and CH4 mmol/g digestible organic matter by 71 % (p = 0.037). 0.12× MgO2 reduced CH4 volume by 25 % (p > 0.05) without affecting any other parameters. Acetate-to-propionate ratios were reduced by treatments in both experiments (p < 0.01). Molar proportions of acetate and butyrate were reduced, while propionate and valerate were increased in UHP treatments. High concentrations of UHP affected the degradation of neutral detergent fibre in the forage substrate. Future in vitro work should investigate alternative slow-release oxygen sources aimed at prolonging CH4 suppression.


Assuntos
Propionatos , Rúmen , Animais , Feminino , Propionatos/metabolismo , Metano/metabolismo , Óxido de Magnésio/metabolismo , Dieta , Silagem/análise , Ruminantes , Acetatos/metabolismo , Oxigênio/metabolismo , Ração Animal/análise , Fermentação , Digestão , Lactação
11.
Nat Commun ; 15(1): 5361, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38918384

RESUMO

Anaerobic digestion of organic waste into methane and carbon dioxide (biogas) is carried out by complex microbial communities. Here, we use full-length 16S rRNA gene sequencing of 285 full-scale anaerobic digesters (ADs) to expand our knowledge about diversity and function of the bacteria and archaea in ADs worldwide. The sequences are processed into full-length 16S rRNA amplicon sequence variants (FL-ASVs) and are used to expand the MiDAS 4 database for bacteria and archaea in wastewater treatment systems, creating MiDAS 5. The expansion of the MiDAS database increases the coverage for bacteria and archaea in ADs worldwide, leading to improved genus- and species-level classification. Using MiDAS 5, we carry out an amplicon-based, global-scale microbial community profiling of the sampled ADs using three common sets of primers targeting different regions of the 16S rRNA gene in bacteria and/or archaea. We reveal how environmental conditions and biogeography shape the AD microbiota. We also identify core and conditionally rare or abundant taxa, encompassing 692 genera and 1013 species. These represent 84-99% and 18-61% of the accumulated read abundance, respectively, across samples depending on the amplicon primers used. Finally, we examine the global diversity of functional groups with known importance for the anaerobic digestion process.


Assuntos
Archaea , Bactérias , Biodiversidade , Microbiota , Filogenia , RNA Ribossômico 16S , Archaea/genética , Archaea/classificação , Archaea/metabolismo , RNA Ribossômico 16S/genética , Anaerobiose , Bactérias/genética , Bactérias/classificação , Bactérias/metabolismo , Microbiota/genética , Águas Residuárias/microbiologia , Reatores Biológicos/microbiologia , Metano/metabolismo , Análise de Sequência de DNA
12.
Archaea ; 2013: 346171, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24089597

RESUMO

The feasibility of anaerobic digestion of dairy wastewater at 10°C was investigated in a high height : diameter ratio EGSB reactor. Stable performance was observed at an applied organic loading rate (OLR) of 0.5-2 kg COD m(-3) d(-1) with chemical oxygen demand (COD) removal efficiencies above 85%. When applied OLR increased to values above 2 kg COD m(-3) d(-1), biotreatment efficiency deteriorated, with methanogenesis being the rate-limiting step. The bioreactor recovered quickly (3 days) after reduction of the OLR. qPCR results showed a reduction in the abundance of hydrogenotrophic methanogenic Methanomicrobiales and Methanobacteriales throughout the steady state period followed by a sharp increase in their numbers (111-fold) after the load shock. Specific methanogenic activity and maximum substrate utilising rate (A(max)) of the biomass at the end of trial indicated increased activity and preference towards hydrogenotrophic methanogenesis, which correlated well with the increased abundance of hydrogenotrophic methanogens. Acetoclastic Methanosaeta spp. remained at stable levels throughout the trial. However, increased apparent half-saturation constant (K(m)) at the end of the trial indicated a decrease in the specific substrate affinity for acetate of the sludge, suggesting that Methanosaeta spp., which have high substrate affinity, started to be outcompeted in the reactor.


Assuntos
Reatores Biológicos/microbiologia , Metano/biossíntese , Methanobacteriales/metabolismo , Methanomicrobiales/metabolismo , Águas Residuárias/microbiologia , Anaerobiose , Bacteroidetes/genética , Bacteroidetes/isolamento & purificação , Biomassa , Indústria de Laticínios , Oxigênio/química , Dinâmica Populacional , Proteobactérias/genética , Proteobactérias/isolamento & purificação , RNA Ribossômico 16S/genética , Spirochaetales/genética , Spirochaetales/isolamento & purificação , Águas Residuárias/química
13.
Appl Environ Microbiol ; 79(14): 4210-9, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23645201

RESUMO

Low-temperature anaerobic digestion (LTAD) technology is underpinned by a diverse microbial community. The methanogenic archaea represent a key functional group in these consortia, undertaking CO2 reduction as well as acetate and methylated C1 metabolism with subsequent biogas (40 to 60% CH4 and 30 to 50% CO2) formation. However, the cold adaptation strategies, which allow methanogens to function efficiently in LTAD, remain unclear. Here, a pure-culture proteomic approach was employed to study the functional characteristics of Methanosarcina barkeri (optimum growth temperature, 37°C), which has been detected in LTAD bioreactors. Two experimental approaches were undertaken. The first approach aimed to characterize a low-temperature shock response (LTSR) of M. barkeri DSMZ 800(T) grown at 37°C with a temperature drop to 15°C, while the second experimental approach aimed to examine the low-temperature adaptation strategies (LTAS) of the same strain when it was grown at 15°C. The latter experiment employed cell viability and growth measurements (optical density at 600 nm [OD600]), which directly compared M. barkeri cells grown at 15°C with those grown at 37°C. During the LTSR experiment, a total of 127 proteins were detected in 37°C and 15°C samples, with 20 proteins differentially expressed with respect to temperature, while in the LTAS experiment 39% of proteins identified were differentially expressed between phases of growth. Functional categories included methanogenesis, cellular information processing, and chaperones. By applying a polyphasic approach (proteomics and growth studies), insights into the low-temperature adaptation capacity of this mesophilically characterized methanogen were obtained which suggest that the metabolically diverse Methanosarcinaceae could be functionally relevant for LTAD systems.


Assuntos
Proteínas de Bactérias/metabolismo , Methanosarcina barkeri/fisiologia , Proteoma/metabolismo , Ácido Acético/metabolismo , Adaptação Fisiológica , Reatores Biológicos/microbiologia , Dióxido de Carbono/metabolismo , Cromatografia Líquida , Temperatura Baixa , Resposta ao Choque Frio , Eletroforese em Gel Bidimensional , Hidrogênio/metabolismo , Metanol/metabolismo , Methanosarcina barkeri/crescimento & desenvolvimento , Espectrometria de Massas em Tandem
14.
Appl Environ Microbiol ; 79(8): 2578-87, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23396337

RESUMO

We determined norovirus (NoV) concentrations in effluent from a wastewater treatment plant and in oysters during the peak period of laboratory-confirmed cases of NoV infection in Ireland in 2010 (January to March). Weekly samples of influent, secondary treated effluent, and oysters were analyzed using real-time quantitative reverse transcription-PCR for NoV genogroup I (GI) and genogroup II (GII). The mean concentration of NoV GII (5.87 × 10(4) genome copies 100 ml(-1)) in influent wastewater was significantly higher than the mean concentration of NoV GI (1.40 × 10(4) genome copies 100 ml(-1)). The highest concentration of NoV GII (2.20 × 10(5) genome copies 100 ml(-1)) was detected in influent wastewater during week 6. Over the study period, a total of 931 laboratory-confirmed cases of NoV GII infection were recorded, with the peak (n = 171) occurring in week 7. In comparison, 16 cases of NoV GI-associated illness were reported during the study period. In addition, the NoV capsid N/S domain was molecularly characterized for selected samples. Multiple genotypes of NoV GI (GI.1, GI.4, GI.5, GI.6, and GI.7) and GII (GII.3, GII.4, GII.6, GII.7, GII.12, GII.13, and GII.17), as well as 4 putative recombinant strains, were detected in the environmental samples. The NoV GII.4 variant 2010 was detected in wastewater and oyster samples and was the dominant strain detected in NoV outbreaks at that time. This study demonstrates the diversity of NoV genotypes present in wastewater during a period of high rates of NoV infection in the community and highlights the potential for the environmental spread of multiple NoV genotypes.


Assuntos
Infecções por Caliciviridae/virologia , Gastroenterite/virologia , Norovirus/genética , Ostreidae/virologia , Águas Residuárias/virologia , Animais , Infecções por Caliciviridae/epidemiologia , Proteínas do Capsídeo/genética , Surtos de Doenças , Gastroenterite/epidemiologia , Genótipo , Humanos , Irlanda/epidemiologia , Norovirus/classificação , Norovirus/isolamento & purificação , Filogenia , RNA Viral/genética , Alinhamento de Sequência , Purificação da Água
15.
Water Environ Res ; 95(11): e10934, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37845010

RESUMO

Three sequential batch reactors were operated for the enrichment in microbial communities able to store polyhydroxyalkanoates (PHAs) using activated sludge as inoculum. They ran simultaneously under the same operational conditions (organic loading rate, hydraulic and solids retention time, cycle length, C/N ratio) just with the solely difference of the working temperature: psychrophilic (15°C), mesophilic (30°C), and thermophilic (48°C). The microbial communities enriched showed different behaviors in terms of consumption and production rates. In terms of PHA accumulation, the psychrophilic community was able to accumulate an average amount of 17.7 ± 5.7 wt% poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), the mesophilic 40.3 ± 7.0 wt% PHBV, and the thermophilic 14.8 ± 0.3 wt% PHBV in dry weight over total solids. The average PHBV production yields for each selected community were 0.41 ± 0.12 CmmolPHBV /CmmolVFA at 15°C, 0.64 ± 0.05 CmmolPHBV /CmmolVFA at 30°C, and 0.39 ± 0.14 CmmolPHBV /CmmolVFA at 48°C. The overall performance of the mesophilic reactor was better than the other two, and the copolymers obtained at this temperature contained a higher PHV fraction. The physico-chemical properties of the obtained biopolymers at each temperature were also measured, and major differences were found in the molecular weight, following an increasing trend with temperature. PRACTITIONER POINTS: PHBV molecular weight is influenced by the operational temperature increasing with it. Increasing temperatures promote the production of HB over HV. The best accumulation performance was found at 30°C for the tested operational conditions.


Assuntos
Poli-Hidroxialcanoatos , Temperatura , Hidroxibutiratos , Reatores Biológicos
16.
Front Microbiol ; 14: 1239189, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37601379

RESUMO

Energy metabolism in extant life is centered around phosphate and the energy-dense phosphoanhydride bonds of adenosine triphosphate (ATP), a deeply conserved and ancient bioenergetic system. Yet, ATP synthesis relies on numerous complex enzymes and has an autocatalytic requirement for ATP itself. This implies the existence of evolutionarily simpler bioenergetic pathways and potentially primordial alternatives to ATP. The centrality of phosphate in modern bioenergetics, coupled with the energetic properties of phosphorylated compounds, may suggest that primordial precursors to ATP also utilized phosphate in compounds such as pyrophosphate, acetyl phosphate and polyphosphate. However, bioavailable phosphate may have been notably scarce on the early Earth, raising doubts about the roles that phosphorylated molecules might have played in the early evolution of life. A largely overlooked phosphorus redox cycle on the ancient Earth might have provided phosphorus and energy, with reduced phosphorus compounds potentially playing a key role in the early evolution of energy metabolism. Here, we speculate on the biological phosphorus compounds that may have acted as primordial energy currencies, sources of environmental energy, or sources of phosphorus for the synthesis of phosphorylated energy currencies. This review encompasses discussions on the evolutionary history of modern bioenergetics, and specifically those pathways with primordial relevance, and the geochemistry of bioavailable phosphorus on the ancient Earth. We highlight the importance of phosphorus, not only in the form of phosphate, to early biology and suggest future directions of study that may improve our understanding of the early evolution of bioenergetics.

17.
Environ Sci Ecotechnol ; 16: 100261, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37089695

RESUMO

The industrial adoption of microbial electrosynthesis (MES) is hindered by high overpotentials deriving from low electrolyte conductivity and inefficient cell designs. In this study, a mixed microbial consortium originating from an anaerobic digester operated under saline conditions (∼13 g L-1 NaCl) was adapted for acetate production from bicarbonate in galvanostatic (0.25 mA cm-2) H-type cells at 5, 10, 15, or 20 g L-1 NaCl concentration. The acetogenic communities were successfully enriched only at 5 and 10 g L-1 NaCl, revealing an inhibitory threshold of about 6 g L-1 Na+. The enriched planktonic communities were then used as inoculum for 3D printed, three-chamber cells equipped with a gas diffusion biocathode. The cells were fed with CO2 gas and operated galvanostatically (0.25 or 1.00 mA cm-2). The highest production rate of 55.4 g m-2 d-1 (0.89 g L-1 d-1), with 82.4% Coulombic efficiency, was obtained at 5 g L-1 NaCl concentration and 1 mA cm-2 applied current, achieving an average acetate production of 44.7 kg MWh-1. Scanning electron microscopy and 16S rRNA sequencing analysis confirmed the formation of a cathodic biofilm dominated by Acetobacterium sp. Finally, three 3D printed cells were hydraulically connected in series to simulate an MES stack, achieving three-fold production rates than with the single cell at 0.25 mA cm-2. This confirms that three-chamber MES cells are an efficient and scalable technology for CO2 bio-electro recycling to acetate and that moderate saline conditions (5 g L-1 NaCl) can help reduce their power demand while preserving the activity of acetogens.

18.
Bioresour Technol ; 380: 129124, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37127168

RESUMO

Facilitating the anaerobic degradation of long chain fatty acids (LCFA) is the key to unlock the energy potential of lipids-rich wastewater. In this study, the feasibility of psychrophilic anaerobic treatment of LCFA-containing dairy wastewater was assessed and compared to mesophilic anaerobic treatment. The results showed that psychrophilic treatment at 15 ℃ was feasible for LCFA-containing dairy wastewater, with high removal rates of soluble COD (>90%) and LCFA (∼100%). However, efficient long-term treatment required prior acclimation of the biomass to psychrophilic temperatures. The microbial community analysis revealed that putative syntrophic fatty acid bacteria and Methanocorpusculum played a crucial role in LCFA degradation during both mesophilic and psychrophilic treatments. Additionally, a fungal-bacterial biofilm was found to be important during the psychrophilic treatment. Overall, these findings demonstrate the potential of psychrophilic anaerobic treatment for industrial wastewaters and highlight the importance of understanding the microbial communities involved in the process.


Assuntos
Microbiota , Águas Residuárias , Anaerobiose , Esgotos/microbiologia , Reatores Biológicos/microbiologia , Ácidos Graxos , Metano
19.
Archaea ; 2012: 940159, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23197942

RESUMO

Granular biomass from a laboratory-scale anaerobic bioreactor trial was analysed to identify changes in microbial community structure and function in response to temperature and trichloroethylene (TCE). Two bioreactors were operated at 37°C, while two were operated at 15°C. At the time of sampling, one of each temperature pair of bioreactors was exposed to process failure-inducing concentrations of TCE (60 mg L(-1)) while the other served as a TCE-free control. Bacterial community structure was investigated using denaturing gradient gel electrophoresis (DGGE) and 16S rRNA gene clone library analysis. Temperature was identified as an important factor for bacterial community composition, while minor differences were associated with trichloroethylene supplementation. Proteobacteria was the dominant phylum in all bioreactors, while clone library analysis revealed a higher proportion of Bacteroidetes-, Chloroflexi-, and Firmicutes-like clones at 15°C than at 37°C. Comparative metaproteomics in the presence and absence of TCE was carried out by two-dimensional gel electrophoresis (2-DGE), and 28 protein spots were identified, with putative functions related to cellular processes, including methanogenesis, glycolysis, the glyoxylate cycle, and the methyl malonyl pathway. A good agreement between metaproteomic species assignment and phylogenetic information was observed, with 10 of the identified proteins associated with members of the phylum Proteobacteria.


Assuntos
Reatores Biológicos/microbiologia , Biota , Proteínas/metabolismo , Proteobactérias/classificação , Tricloroetileno/toxicidade , Microbiologia da Água , Anaerobiose , Biomassa , Análise por Conglomerados , DNA Bacteriano/genética , Eletroforese em Gel de Gradiente Desnaturante , Metagenoma , Dados de Sequência Molecular , Filogenia , Proteobactérias/genética , Proteobactérias/metabolismo , Proteoma , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Temperatura
20.
Appl Environ Microbiol ; 78(9): 3400-6, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22367079

RESUMO

The concentrations of Escherichia coli, F-specific RNA bacteriophage (FRNA bacteriophage), and norovirus genogroup I (NoV GI) and norovirus genogroup II (NoV GII) in wastewater were monitored weekly over a 1-year period at a wastewater treatment plant (WWTP) providing secondary wastewater treatment. A total of 49 samples of influent wastewater and wastewater that had been treated by primary and secondary wastewater treatment processes (primary and secondary treated wastewater) were analyzed. Using a real-time reverse transcription-quantitative PCR (RT-qPCR), the mean NoV GI and NoV GII concentrations detected in effluent wastewater were 2.53 and 2.63 log(10) virus genome copies 100 ml(-1), respectively. The mean NoV concentrations in wastewater during the winter period (January to March) (n = 12) were 0.82 (NoV GI) and 1.41 (NoV GII) log units greater than the mean concentrations for the rest of the year (n = 37). The mean reductions of NoV GI and GII during treatment were 0.80 and 0.92 log units, respectively, with no significant difference detected in the extent of NoV reductions due to season. No seasonal trend was detected in the concentrations of E. coli or FRNA bacteriophage in wastewater influent and showed mean reductions of 1.49 and 2.13 log units, respectively. Mean concentrations of 3.56 and 3.72 log(10) virus genome copies 100 ml(-1) for NoV GI and GII, respectively, were detected in oysters sampled adjacent to the WWTP discharge. A strong seasonal trend was observed, and the concentrations of NoV GI and GII detected in oysters were correlated with concentrations detected in the wastewater effluent. No seasonal difference was detected in concentrations of E. coli or FRNA bacteriophage detected in oysters.


Assuntos
Norovirus/isolamento & purificação , Ostreidae/virologia , Carga Viral , Microbiologia da Água , Purificação da Água , Animais , Bacteriófagos/isolamento & purificação , Escherichia coli/isolamento & purificação , Reação em Cadeia da Polimerase em Tempo Real , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA