Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(7)2022 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-35408380

RESUMO

Passive radar is a technology that has huge potential for airspace monitoring, taking advantage of existing transmissions. However, to predict whether particular targets can be measured in a particular scenario, it is necessary to be able to model the received signal. In this paper, we present the results of a campaign in which a Pilatus PC-12 single-engine aircraft was measured with a passive radar system relying on DVB-T transmission from a single transmitter. We then present our work to simulate the bistatic RCS of the aircraft along its flight track, using both the method of moments and the shooting and bouncing ray solvers, assess the uncertainty in the simulations, and compare against the measurements. We find that our simulated RCS values are useful in predicting whether or not detection occurs. However, we see poor agreement between simulated and measured RCS values where measurements are available, which we attribute primarily to the difficulties in extracting RCS measurements from the data and to unmodeled transmission and received path effects.

2.
Sensors (Basel) ; 21(1)2020 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-33374426

RESUMO

Research in passive radar has moved its focus towards passive radar on moving platforms in recent years with the purpose of moving target indication and ground imaging via synthetic aperture radar. This is also fostered by the progress in hardware miniaturization, which alleviates the installation of the required hardware on moving platforms. Terrestrial transmitters, commonly known as illuminators of opportunity in the passive radar community, usually emit the signals in the Very High Frequency (VHF) or Ultra High Frequency (UHF) band. Due to the long wavelengths of the VHF/UHF band, there are constraints on the size of the used antenna elements, and therefore, the number of antenna elements to be employed is limited, especially as the platform carrying the passive radar system is intended to be small, potentially even an unmanned aerial vehicle. In order to detect moving targets hidden by Doppler shifted clutter returns, one common approach is to suppress the clutter returns by applying clutter suppression techniques that rely on spatial and temporal degrees of freedom, such as Displaced Phase Center Antenna (DPCA) or Space-Time Adaptive Processing. It has been shown that the DPCA approach is a meaningful technique to suppress the clutter if two antenna elements are employed. However, if the employed receiving channels are not carefully calibrated, the clutter suppression is shown to be not effective. Here, we suggest a three-stage calibration technique in order to perform the calibration of two receiving channels, which involves the exploitation of the direct signal, a data-adaptive amplitude calibration, and finally, a data-adaptive calibration of phase mismatches between both receiving channels by the estimation of the Minimum Variance Power Spectrum of the clutter. The validity of the proposed approach is shown with simulated data and demonstrated on real data from a fast ground moving platform, showing improved clutter cancellation capabilities.

3.
Sensors (Basel) ; 20(11)2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-32532081

RESUMO

This article presents the statistical analysis of bistatic radar rural ground clutter for different terrain types under low grazing angles. Compared to most state-of-the-art analysis, we present country-specific clutter analysis for subgroups of rural environments rather than for the rural environment as a whole. Therefore, the rural environment analysis is divided into four dominant subgroup terrain types, namely fields with low vegetation, fields with high vegetation, plantations of small trees and forest environments representing a typical rural German environment. We will present the results for both the summer and the winter vegetation. Therefore, bistatic measurement campaigns have been carried out during the summer 2019 and the winter of 2019/20 in the aforementioned four different rural terrain types. The measurements were performed in the radar relevant X-band at a center frequency of 8.85 GHz and over a bandwidth of 100 MHz according to available transmit permission. The distinction of the rural terrain into different subgroups enables a more precise and accurate clutter analysis and modeling of the statistical properties as will be shown in the presented results. The statistical properties are derived from the calculated clutter amplitudes probability density functions and corresponding cumulative distribution functions for each of the four terrain types and the corresponding season. The data basis for the clutter analysis are the processed range-Doppler maps from the bistatic radar measurements. According to the authors' current knowledge, a similar investigation based on real bistatic radar measurement data with the division into terrain subgroups has not yet been carried out and published for a German rural environment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA