Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
J Pharmacol Exp Ther ; 367(3): 494-508, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30305428

RESUMO

Monoacylglycerol lipase (MGLL) is the primary degradative enzyme for the endocannabinoid 2-arachidonoylglycerol (2-AG). The first MGLL inhibitors have recently entered clinical development for the treatment of neurologic disorders. To support this clinical path, we report the pharmacological characterization of the highly potent and selective MGLL inhibitor ABD-1970 [1,1,1,3,3,3-hexafluoropropan-2-yl 4-(2-(8-oxa-3-azabicyclo[3.2.1]octan-3-yl)-4-chlorobenzyl)piperazine-1-carboxylate]. We used ABD-1970 to confirm the role of MGLL in human systems and to define the relationship between MGLL target engagement, brain 2-AG concentrations, and efficacy. Because MGLL contributes to arachidonic acid metabolism in a subset of rodent tissues, we further used ABD-1970 to evaluate whether selective MGLL inhibition would affect prostanoid production in several human assays known to be sensitive to cyclooxygenase inhibitors. ABD-1970 robustly elevated brain 2-AG content and displayed antinociceptive and antipruritic activity in a battery of rodent models (ED50 values of 1-2 mg/kg). The antinociceptive effects of ABD-1970 were potentiated when combined with analgesic standards of care and occurred without overt cannabimimetic effects. ABD-1970 also blocked 2-AG hydrolysis in human brain tissue and elevated 2-AG content in human blood without affecting stimulated prostanoid production. These findings support the clinical development of MGLL inhibitors as a differentiated mechanism to treat pain and other neurologic disorders.


Assuntos
Endocanabinoides/metabolismo , Inibidores Enzimáticos/farmacologia , Monoacilglicerol Lipases/antagonistas & inibidores , Analgésicos/farmacologia , Animais , Antipruriginosos/farmacologia , Ácidos Araquidônicos/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Linhagem Celular Tumoral , Inibidores de Ciclo-Oxigenase/farmacologia , Glicerídeos/metabolismo , Humanos , Hidrólise/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos ICR , Células PC-3 , Dor/tratamento farmacológico , Dor/metabolismo , Piperidinas/farmacologia , Prostaglandinas/farmacologia , Ratos , Ratos Sprague-Dawley , Roedores
2.
Mol Pharmacol ; 79(1): 69-76, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20943773

RESUMO

The chemoattractant receptor-homologous molecule expressed on T-helper type 2 cells (CRTH2) is a G protein-coupled receptor that has been reported to modulate inflammatory responses in various rodent models of asthma, allergic rhinitis and atopic dermatitis. In this study, we describe the biological and pharmacological properties of {(7R)-7-[[(4-fluorophenyl)sulfonyl](methyl)amino]-6,7,8,9-tetrahydropyrido[1,2-a]indol-10-yl}acetic acid (MK-7246), a novel synthetic CRTH2 antagonist. We show that MK-7246 1) has high affinity for the human, monkey, dog, rat, and mouse CRTH2, 2) interacts with CRTH2 in a reversible manner, 3) exhibits high selectivity over all prostanoid receptors as well as 157 other receptors and enzymes, 4) acts as a full antagonist on recombinant and endogenously expressed CRTH2, 5) demonstrates good oral bioavailability and metabolic stability in various animal species, 6) yields ex vivo blockade of CRTH2 on eosinophils in monkeys and sheep, and 7) significantly blocks antigen-induced late-phase bronchoconstriction and airway hyper-responsiveness in sheep. MK-7246 represents a potent and selective tool to further investigate the in vivo function of CRTH2.


Assuntos
Carbolinas/química , Carbolinas/farmacologia , Receptores Imunológicos/antagonistas & inibidores , Receptores Imunológicos/biossíntese , Receptores de Prostaglandina/antagonistas & inibidores , Receptores de Prostaglandina/biossíntese , Células Th2/metabolismo , Animais , Cães , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/imunologia , Células HEK293 , Humanos , Macaca fascicularis , Camundongos , Inibidores da Agregação Plaquetária/farmacologia , Ligação Proteica/imunologia , Ratos , Receptores Imunológicos/metabolismo , Receptores Imunológicos/fisiologia , Receptores de Prostaglandina/metabolismo , Receptores de Prostaglandina/fisiologia , Ovinos , Especificidade da Espécie , Células Th2/efeitos dos fármacos
3.
J Pharmacol Exp Ther ; 338(1): 220-7, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21459965

RESUMO

Both the physiological role of muscarinic receptors for bladder function and the therapeutic efficacy of antimuscarinic agents for overactive bladder syndrome are well documented. We investigated the effect of antimuscarinic agents with different subtype selectivity on urodynamic parameters in nonhuman primates and rodents and compared plasma levels of these agents between species. Anesthetized rhesus monkeys were transurethrally catheterized, and the bladder was infused with saline. Urodynamic parameters were measured before and after intravenous drug administration. Tolterodine (nonselective) and oxybutynin (moderately M(3)-selective) increased bladder capacity at lower doses than those required to decrease micturition pressure. However, higher doses of darifenacin (M(3)-selective) were needed to increase the bladder capacity than those needed to decrease the micturition pressure. In rats, tolterodine had no effect on the bladder capacity but decreased the micturition pressure at all of the doses administered. Oxybutynin also decreased micturition pressure and increased bladder capacity at the highest dose. Plasma levels of these drugs overlap in both species. These results suggest that, in addition to the M(3) receptor, other muscarinic receptor subtypes contribute to regulate bladder storage function in nonhuman primates, since less subtype-selective tolterodine and oxybutynin showed higher specificity to the bladder capacity effect than the effect on micturition pressure compared with M(3)-selective darifenacin. In addition, the role of muscarinic receptors in bladder storage function varies between primates and rodents. Compared with rodents, muscarinic receptors may play a more active role during the storage phase to regulate the functional bladder capacity in primates.


Assuntos
Antagonistas Muscarínicos/farmacologia , Bexiga Urinária/efeitos dos fármacos , Bexiga Urinária/fisiologia , Animais , Compostos Benzidrílicos/farmacologia , Cresóis/farmacologia , Feminino , Macaca mulatta , Ácidos Mandélicos/farmacologia , Fenilpropanolamina/farmacologia , Ratos , Ratos Sprague-Dawley , Especificidade da Espécie , Tartarato de Tolterodina
4.
Bioorg Med Chem Lett ; 21(1): 288-93, 2011 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-21106375

RESUMO

In this manuscript we wish to report the discovery of MK-7246 (4), a potent and selective CRTH2 (DP2) antagonist. SAR studies leading to MK-7246 along with two synthetic sequences enabling the preparation of this novel class of CRTH2 antagonist are reported. Finally, the pharmacokinetic and metabolic profile of MK-7246 is disclosed.


Assuntos
Carbolinas/química , Pneumopatias/tratamento farmacológico , Receptores Imunológicos/antagonistas & inibidores , Receptores de Prostaglandina/antagonistas & inibidores , Animais , Carbolinas/farmacocinética , Carbolinas/uso terapêutico , Humanos , Macaca mulatta , Microssomos Hepáticos/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores Imunológicos/metabolismo , Receptores de Prostaglandina/metabolismo , Relação Estrutura-Atividade
5.
COPD ; 7(1): 51-8, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20214463

RESUMO

Chronic obstructive pulmonary disease (COPD) is a prevalent pulmonary disease characterized by a progressive decline in lung function. The identification of biomarkers capable of predicting the rate of lung function decline or capable of giving an early read on drug efficacy in clinical trials would be very useful. The aim of this study was to identify plasma biomarkers capable of accurately distinguishing patients with COPD from healthy controls. Eighty-nine plasma markers in 40 COPD patients and 20 healthy smoker controls were analyzed. The COPD patients were divided into two subgroups, rapid and slow decliners based on their rate of lung function decline measured over 15 years. Univariate analysis revealed that 25 plasma markers were statistically different between rapid decliners and controls, 4 markers were different between slow decliners and controls, and 10 markers were different between rapid and slow decliners (p < 0.05). Multivariate analysis led to the identification of groups of plasma markers capable of distinguishing rapid decliners from controls (signature 1), slow decliners from controls (signature 2) and rapid from slow decliners (signature 3) with over 90% classification accuracy. Importantly, signature 1 was shown to be longitudinally stable using plasma samples taken a year later from a subset of patients. This study describes a novel set of plasma markers differentiating slow from rapid decline of lung function in COPD. If validated in distinct and larger cohorts, the signatures identified will have important implications in both disease diagnosis, as well as the clinical evaluation of new therapies.


Assuntos
Biomarcadores/sangue , Doença Pulmonar Obstrutiva Crônica/sangue , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Estudos de Casos e Controles , Feminino , Volume Expiratório Forçado/fisiologia , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Prognóstico , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Índice de Gravidade de Doença , Fatores de Tempo
6.
SLAS Technol ; 24(5): 489-498, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31199699

RESUMO

Accurate measurement of drug-target interactions in vivo is critical for both preclinical development and translation to clinical studies, yet many assays rely on indirect measures such as biomarkers associated with target activity. Activity-based protein profiling (ABPP) is a direct method of quantifying enzyme activity using active site-targeted small-molecule covalent probes that selectively label active but not inhibitor-bound enzymes. Probe-labeled enzymes in complex proteomes are separated by polyacrylamide gel electrophoresis and quantified by fluorescence imaging. To accelerate workflows and avoid imaging artifacts that make conventional gels challenging to quantify, we adapted protocols for a commercial LabChip GXII microfluidic instrument to permit electrophoretic separation of probe-labeled proteins in tissue lysates and plasma, and quantification of fluorescence (probe/protein labeling ratio of 1:1). Electrophoretic separation on chips occurred in 40 s per sample, and instrument software automatically identified and quantified peaks, resulting in an overall time savings of 3-5 h per 96-well sample plate. Calculated percent inhibition was not significantly different between the two formats. Chip performance was consistent between chips and sample replicates. Conventional gel imaging was more sensitive but required five times higher sample volume than microfluidic chips. Microfluidic chips produced results comparable to those of gels but with much lower sample consumption, facilitating assay miniaturization for scarce biological samples. The time savings afforded by microfluidic electrophoresis and automatic quantification has allowed us to incorporate microfluidic ABPP early in the drug discovery workflow, enabling routine assessments of tissue distribution and engagement of targets and off-targets in vivo.


Assuntos
Microfluídica/métodos , Proteômica/métodos , Algoritmos , Animais , Bioensaio , Camundongos , Peso Molecular , Reprodutibilidade dos Testes
7.
Am J Respir Cell Mol Biol ; 39(1): 26-35, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18258919

RESUMO

Interleukin 13 (IL-13) is considered to be a key driver of the development of airway allergic inflammation and remodeling leading to airway hyperresponsiveness (AHR). How precisely IL-13 leads to the development of airway inflammation, AHR, and mucus production is not fully understood. In order to identify key mediators downstream of IL-13, we administered adenovirus IL-13 to specifically induce IL-13-dependent inflammation in the lungs of mice. This approach was shown to induce cardinal features of lung disease, specifically airway inflammation, elevated cytokines, AHR, and mucus secretion. Notably, the model is resistant to corticosteroid treatment and is characterized by marked neutrophilia, two hallmarks of more severe forms of asthma. To identify IL-13-dependent mediators, we performed a limited-scale two-dimensional SDS-PAGE proteomic analysis and identified proteins significantly modulated in this model. Intriguingly, several identified proteins were unique to this model, whereas others correlated with those modulated in a mouse ovalbumin-induced pulmonary inflammation model. We corroborated this approach by illustrating that proteomic analysis can identify known pathways/mediators downstream of IL-13. Thus, we have characterized a murine adenovirus IL-13 lung model that recapitulates specific disease traits observed in human asthma, and have exploited this model to identify effectors downstream of IL-13. Collectively, these findings will enable a broader appreciation of IL-13 and its impact on disease pathways in the lung.


Assuntos
Infecções por Adenoviridae/fisiopatologia , Adenoviridae , Obstrução das Vias Respiratórias/induzido quimicamente , Interleucina-13/efeitos adversos , Adenoviridae/genética , Animais , Técnicas de Cultura de Células , Divisão Celular , Modelos Animais de Doenças , Interleucina-13/genética , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Muco/metabolismo , Ovalbumina/efeitos adversos , Testes de Função Respiratória , Mucosa Respiratória/citologia , Mucosa Respiratória/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
8.
J Med Chem ; 61(20): 9062-9084, 2018 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-30067909

RESUMO

The serine hydrolase monoacylglycerol lipase (MGLL) converts the endogenous cannabinoid receptor agonist 2-arachidonoylglycerol (2-AG) and other monoacylglycerols into fatty acids and glycerol. Genetic or pharmacological inactivation of MGLL leads to elevation in 2-AG in the central nervous system and corresponding reductions in arachidonic acid and eicosanoids, producing antinociceptive, anxiolytic, and antineuroinflammatory effects without inducing the full spectrum of psychoactive effects of direct cannabinoid receptor agonists. Here, we report the optimization of hexafluoroisopropyl carbamate-based irreversible inhibitors of MGLL, culminating in a highly potent, selective, and orally available, CNS-penetrant MGLL inhibitor, 28 (ABX-1431). Activity-based protein profiling experiments verify the exquisite selectivity of 28 for MGLL versus other members of the serine hydrolase class. In vivo, 28 inhibits MGLL activity in rodent brain (ED50 = 0.5-1.4 mg/kg), increases brain 2-AG concentrations, and suppresses pain behavior in the rat formalin pain model. ABX-1431 (28) is currently under evaluation in human clinical trials.


Assuntos
Descoberta de Drogas , Monoacilglicerol Lipases/antagonistas & inibidores , Doenças do Sistema Nervoso/tratamento farmacológico , Doenças do Sistema Nervoso/enzimologia , Piperazina/farmacologia , Piperazinas/farmacologia , Pirrolidinas/farmacologia , Animais , Cães , Relação Dose-Resposta a Droga , Humanos , Masculino , Camundongos , Terapia de Alvo Molecular , Dor/tratamento farmacológico , Dor/enzimologia , Piperazina/farmacocinética , Piperazina/uso terapêutico , Piperazinas/farmacocinética , Piperazinas/uso terapêutico , Pirrolidinas/farmacocinética , Pirrolidinas/uso terapêutico , Ratos , Distribuição Tecidual
9.
Immunol Lett ; 100(2): 139-45, 2005 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-16154494

RESUMO

The anaphylatoxin C3a is an important immune regulator with a number of distinct functions in both innate and adaptive immunity. Many of these roles have been ascribed to C3a based on studies in mice genetically modified to lack its precursor, C3, or its receptor, C3aR. However, other presumed functions of C3a are based on results obtained with a recently described small molecule ligand of C3aR, SB 290157. Although this compound was originally described as an antagonist and appears to act as such in some systems, it has recently been shown to have effects that cannot be explained by simple antagonism of C3aR. In the current study, SB 290157 is shown to have full agonist activity on C3aR in a variety of cell systems, including a calcium mobilization assay in transfected RBL cells, a beta-lactamase assay in CHO-NFAT-bla-Galpha(16) cells and an enzyme-release assay in differentiated U-937 cells. On the other hand, the compound lacks agonist activity in guinea pig platelets, cells known to express C3aR at very low levels. SB 290157 agonism of C3aR is consistent with recent discrepant data obtained using this molecule. These results caution against attributing novel roles to C3a based on data obtained with SB 290157 and highlight a continuing need for the identification of true small molecule C3aR antagonists.


Assuntos
Arginina/análogos & derivados , Compostos Benzidrílicos/farmacologia , Cálcio/metabolismo , Proteínas de Membrana/agonistas , Receptores de Complemento/agonistas , Animais , Arginina/farmacologia , Ligação Competitiva , Plaquetas/efeitos dos fármacos , Plaquetas/metabolismo , Células CHO , Linhagem Celular Tumoral , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Complemento C3a , Cricetinae , Cricetulus , Relação Dose-Resposta a Droga , Humanos , Macaca fascicularis , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/genética , Ratos , Receptores de Complemento/antagonistas & inibidores , Receptores de Complemento/genética , Transfecção , Células U937 , beta-Lactamases/genética , beta-Lactamases/metabolismo
10.
Br J Pharmacol ; 137(8): 1163-72, 2002 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12466225

RESUMO

1. The recombinant human prostaglandin D(2) (PGD(2)) receptor, hCRTH2, has been expressed in HEK293(EBNA) and characterized with respect to radioligand binding and signal transduction properties. High and low affinity binding sites for PGD(2) were identified in the CRTH2 receptor population by saturation analysis with respective equilibrium dissociation constants (K(D)) of 2.5 and 109 nM. This revealed that the affinity of PGD(2) for CRTH2 is eight times less than its affinity for the DP receptor. 2. Equilibrium competition binding assays revealed that of the compounds tested, only PGD(2) and several related metabolites bound with high affinity to CRTH2 (K(i) values ranging from 2.4 to 34.0 nM) with the following rank order of potency: PGD(2)>13,14-dihydro-15-keto PGD(2)>15-deoxy-Delta(12,14)-PGJ(2)>PGJ(2)>Delta(12)-PGJ(2)>15(S)-15 methyl-PGD(2). This is in sharp contrast with the rank order of potency obtained at DP : PGD(2)>PGJ(2)>Delta(12)-PGJ(2)>15-deoxy-Delta(12,14)-PGJ(2) >>>13,14-dihydro-15-keto-PGD(2). 3. Functional studies demonstrated that PGD(2) activation of recombinant CRTH2 results in decrease of intracellular cAMP in a pertussis toxin-sensitive manner. Therefore, we showed that CRTH2 can functionally couple to the G-protein G(alphai/o). PGD(2) and related metabolites were tested and their rank order of potency followed the results of the membrane binding assay. 4. By Northern blot analysis, we showed that, besides haemopoietic cells, CRTH2 is expressed in many other tissues such as brain, heart, thymus, spleen and various tissues of the digestive system. In addition, in situ hybridization studies revealed that CRTH2 mRNA is expressed in human eosinophils. Finally, radioligand binding studies demonstrated that two eosinophilic cell lines, butyric acid-differentiated HL-60 and AML 14.3D10, also endogenously express CRTH2.


Assuntos
Receptores Imunológicos/metabolismo , Receptores de Prostaglandina/metabolismo , Ligação Competitiva/efeitos dos fármacos , Ligação Competitiva/fisiologia , Linhagem Celular , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , Células HL-60 , Humanos , RNA Mensageiro/biossíntese , RNA Mensageiro/metabolismo , Receptores Imunológicos/agonistas , Receptores Imunológicos/biossíntese , Receptores de Prostaglandina/agonistas , Receptores de Prostaglandina/biossíntese , Receptores de Prostaglandina/fisiologia , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacologia , Transfecção
11.
Prostaglandins Other Lipid Mediat ; 73(1-2): 87-101, 2004 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15165034

RESUMO

BACKGROUND: Prostaglandin D2 (PGD2) is released from mast cells during the allergic response. OBJECTIVE: Since PGD2 has been shown to induce nasal congestion in humans, we investigated the distribution of hematopoietic prostaglandin D synthase (PGDS) and the two PGD2 receptors, DP and CRTH2 in human nasal mucosa from healthy subjects and subjects suffering from polyposis, a severe form of chronic rhinosinusitis. METHODS: DP mRNA expression was detected by in situ hybridization while PGDS, CRTH2 and various leukocyte markers expression were revealed by immunohistochemistry. RESULTS: In the normal mucosa, PGDS was only detected in few resident mast cells while CRTH2 was undetectable. In contrast, DP receptor mRNA was detected in epithelial goblet cells, serous glands and in the vasculature. In the nasal mucosa of subjects suffering from polyposis: (1) PGDS was detected in mast cells and other large infiltrating inflammatory cells, (2) both DP mRNA and CRTH2 were detected in eosinophils and (3) CRTH2 was detected on a subset of infiltrating T cells. Although DP mRNA could not be detected in the T cells invading the nasal mucosa, it was found to be expressed in the T cells present in the lymph node and the thymus from normal individuals. CONCLUSION: This study indicates that cells capable of producing PGD2 are present in the nasal mucosa and that both PGD2 receptors, DP and CRTH2, might play a role in inflammatory disease of the upper airways.


Assuntos
Oxirredutases Intramoleculares/biossíntese , Mastócitos/metabolismo , Mucosa Nasal/metabolismo , Pólipos Nasais/metabolismo , Receptores Imunológicos/biossíntese , Receptores de Prostaglandina/biossíntese , Adulto , Idoso , Eosinófilos/metabolismo , Feminino , Regulação da Expressão Gênica , Humanos , Hipersensibilidade/metabolismo , Hipersensibilidade/patologia , Hibridização In Situ , Inflamação/metabolismo , Inflamação/patologia , Lipocalinas , Linfonodos/citologia , Linfonodos/metabolismo , Masculino , Pessoa de Meia-Idade , Mucosa Nasal/citologia , Mucosa Nasal/patologia , Pólipos Nasais/patologia , RNA Mensageiro/biossíntese , Linfócitos T/metabolismo , Timo/citologia , Timo/metabolismo
12.
J Biol Chem ; 281(34): 24704-12, 2006 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-16790440

RESUMO

Neuropeptide S (NPS) and its receptor (NPSR) are thought to have a role in asthma pathogenesis; a number of single nucleotide polymorphisms within NPSR have been shown to be associated with an increased prevalance of asthma. One such single nucleotide polymorphism leads to the missense mutation N107I, which results in an increase in the potency of NPS for NPSR. To gain insight into structure-function relationships within NPS and NPSR, we first carried out a limited structural characterization of NPS and subjected the peptide to extensive mutagenesis studies. Our results show that the NH(2)-terminal third of NPS, in particular residues Phe-2, Arg-3, Asn-4, and Val-6, are necessary and sufficient for activation of NPSR. Furthermore, part of a nascent helix within the peptide, spanning residues 5 through 13, acts as a regulatory region that inhibits receptor activation. Notably, this inhibition is absent in the asthma-linked N107I variant of NPSR, suggesting that residue 107 interacts with the aforementioned regulatory region of NPS. Whereas this interaction may be at the root of the increase in potency associated with the N107I variant, we show here that the mutation also causes an increase in cell-surface expression of the mutant receptor, leading to a concomitant increase in the maximal efficacy (E(max)) of NPS. Our results identify the key residues of NPS involved in NPSR activation and suggest a molecular basis for the functional effects of the N107I mutation and for its putative pathophysiological link with asthma.


Assuntos
Receptores de Neuropeptídeos/química , Sequência de Aminoácidos , Asma/genética , Asma/metabolismo , Linhagem Celular , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Neuropeptídeos/química , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Ligação Proteica , Conformação Proteica , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Neuropeptídeos/genética , Receptores de Neuropeptídeos/metabolismo , Relação Estrutura-Atividade , Transfecção
13.
Mol Pharmacol ; 67(6): 1834-9, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15755909

RESUMO

The chemoattractant receptor-homologous molecule expressed on T-helper type 2 cells (CRTH2) is a G protein-coupled receptor whose function in vivo has been incompletely characterized. One of the reasons is that its current known ligands, prostaglandin D(2) and some of its metabolites, have either poor selectivity for CRTH2 or are metabolically unstable in vivo. In this study, we describe the biological and pharmacological properties of L-888,607, the first synthetic potent and selective CRTH2 agonist. We show that L-888,607 exhibits 1) subnanomolar affinity for the human CRTH2 receptor, 2) high selectivity over all other prostanoid receptors and other receptors tested, 3) agonistic activity on recombinant and endogenously expressed CRTH2 receptor, and 4) relative stability in vivo. L-888,607 thus represents a suitable tool to investigate the in vivo function of CRTH2.


Assuntos
Acetatos/farmacologia , Compostos Heterocíclicos com 3 Anéis/farmacologia , Receptores Imunológicos/agonistas , Receptores de Prostaglandina/agonistas , Acetatos/química , Acetatos/metabolismo , Animais , Quimiotaxia de Leucócito/efeitos dos fármacos , Quimiotaxia de Leucócito/fisiologia , Eosinófilos/efeitos dos fármacos , Eosinófilos/metabolismo , Eosinófilos/fisiologia , Compostos Heterocíclicos com 3 Anéis/química , Compostos Heterocíclicos com 3 Anéis/metabolismo , Humanos , Indometacina/análogos & derivados , Indometacina/farmacologia , Ligantes , Masculino , Camundongos , Camundongos Endogâmicos ICR , Receptores Imunológicos/metabolismo , Receptores de Prostaglandina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA