Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
1.
Nature ; 621(7978): 355-364, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37612510

RESUMO

The prevalence of highly repetitive sequences within the human Y chromosome has prevented its complete assembly to date1 and led to its systematic omission from genomic analyses. Here we present de novo assemblies of 43 Y chromosomes spanning 182,900 years of human evolution and report considerable diversity in size and structure. Half of the male-specific euchromatic region is subject to large inversions with a greater than twofold higher recurrence rate compared with all other chromosomes2. Ampliconic sequences associated with these inversions show differing mutation rates that are sequence context dependent, and some ampliconic genes exhibit evidence for concerted evolution with the acquisition and purging of lineage-specific pseudogenes. The largest heterochromatic region in the human genome, Yq12, is composed of alternating repeat arrays that show extensive variation in the number, size and distribution, but retain a 1:1 copy-number ratio. Finally, our data suggest that the boundary between the recombining pseudoautosomal region 1 and the non-recombining portions of the X and Y chromosomes lies 500 kb away from the currently established1 boundary. The availability of fully sequence-resolved Y chromosomes from multiple individuals provides a unique opportunity for identifying new associations of traits with specific Y-chromosomal variants and garnering insights into the evolution and function of complex regions of the human genome.


Assuntos
Cromossomos Humanos Y , Evolução Molecular , Humanos , Masculino , Cromossomos Humanos Y/genética , Genoma Humano/genética , Genômica , Taxa de Mutação , Fenótipo , Eucromatina/genética , Pseudogenes , Variação Genética/genética , Cromossomos Humanos X/genética , Regiões Pseudoautossômicas/genética
2.
Proc Natl Acad Sci U S A ; 121(36): e2412185121, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39190362

RESUMO

X chromosome inactivation (XCI) is an epigenetic process that results in the transcriptional silencing of one X chromosome in the somatic cells of females. This phenomenon is common to both eutherian and marsupial mammals, but there are fundamental differences. In eutherians, the X chosen for silencing is random. DNA methylation on the eutherian inactive X is high at transcription start sites (TSSs) and their flanking regions, resulting in universally high DNA methylation. This contrasts XCI in marsupials where the paternally derived X is always silenced, and in which DNA methylation is low at TSSs and flanking regions. Here, we examined the DNA methylation status of the tammar wallaby X chromosome during spermatogenesis to determine the DNA methylation profile of the paternal X prior to and at fertilization. Whole genome enzymatic methylation sequencing was carried out on enriched flow-sorted populations of premeiotic, meiotic, and postmeiotic cells. We observed that the X displayed a pattern of DNA methylation from spermatogonia to mature sperm that reflected the inactive X in female somatic tissue. Therefore, the paternal X chromosome arrives at the egg with a DNA methylation profile that reflects the transcriptionally silent X in adult female somatic tissue. We present this epigenetic signature as a candidate for the long sought-after imprint for paternal XCI in marsupials.


Assuntos
Metilação de DNA , Inativação do Cromossomo X , Cromossomo X , Animais , Inativação do Cromossomo X/genética , Masculino , Feminino , Cromossomo X/genética , Impressão Genômica , Espermatogênese/genética , Macropodidae/genética , Óvulo/metabolismo , Marsupiais/genética , Espermatozoides/metabolismo , Epigênese Genética
3.
Bioinformatics ; 39(39 Suppl 1): i242-i251, 2023 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-37387144

RESUMO

MOTIVATION: Non-canonical (or non-B) DNA are genomic regions whose three-dimensional conformation deviates from the canonical double helix. Non-B DNA play an important role in basic cellular processes and are associated with genomic instability, gene regulation, and oncogenesis. Experimental methods are low-throughput and can detect only a limited set of non-B DNA structures, while computational methods rely on non-B DNA base motifs, which are necessary but not sufficient indicators of non-B structures. Oxford Nanopore sequencing is an efficient and low-cost platform, but it is currently unknown whether nanopore reads can be used for identifying non-B structures. RESULTS: We build the first computational pipeline to predict non-B DNA structures from nanopore sequencing. We formalize non-B detection as a novelty detection problem and develop the GoFAE-DND, an autoencoder that uses goodness-of-fit (GoF) tests as a regularizer. A discriminative loss encourages non-B DNA to be poorly reconstructed and optimizing Gaussian GoF tests allows for the computation of P-values that indicate non-B structures. Based on whole genome nanopore sequencing of NA12878, we show that there exist significant differences between the timing of DNA translocation for non-B DNA bases compared with B-DNA. We demonstrate the efficacy of our approach through comparisons with novelty detection methods using experimental data and data synthesized from a new translocation time simulator. Experimental validations suggest that reliable detection of non-B DNA from nanopore sequencing is achievable. AVAILABILITY AND IMPLEMENTATION: Source code is available at https://github.com/bayesomicslab/ONT-nonb-GoFAE-DND.


Assuntos
Sequenciamento por Nanoporos , Humanos , DNA , Carcinogênese , Transformação Celular Neoplásica , Genômica
4.
J Immunol ; 206(4): 892-903, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33408257

RESUMO

Donor-derived lymphocytes from allogeneic hematopoietic cell transplantation (allo-HCT) or donor lymphocyte infusion can mediate eradication of host tumor cells in a process labeled the graft-versus-tumor (GVT) effect. Unfortunately, these treatments have produced limited results in various types of leukemia because of an insufficient GVT effect. In this context, molecular engineering of donor lymphocytes to increase the GVT effect may benefit cancer patients. Activating MyD88 signaling in CD8+ T cells via TLR enhances T cell activation and cytotoxicity. However, systemic administration of TLR ligands to stimulate MyD88 could induce hyperinflammation or elicit protumor effects. To circumvent this problem, we devised a synthetic molecule consisting of MyD88 linked to the ectopic domain of CD8a (CD8α:MyD88). We used this construct to test the hypothesis that MyD88 costimulation in donor CD8+ T cells increases tumor control following allo-HCT in mice by increasing T cell activation, function, and direct tumor cytotoxicity. Indeed, an increase in both in vitro and in vivo tumor control was observed with CD8α:MyD88 T cells. This increase in the GVT response was associated with increased T cell expansion, increased functional capacity, and an increase in direct cytotoxic killing of the tumor cells. However, MyD88 costimulation in donor CD8+ T cells was linked to increased yet nonlethal graft-versus-host disease in mice treated with these engineered CD8+ T cells. Given these observations, synthetic CD8α:MyD88 donor T cells may represent a unique and versatile approach to enhance the GVT response that merits further refinement to improve the effectiveness of allo-HCT.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Leucemia , Animais , Linfócitos T CD8-Positivos , Efeito Enxerto vs Tumor , Humanos , Camundongos , Fator 88 de Diferenciação Mieloide , Transplante Homólogo
5.
J Hered ; 114(1): 35-43, 2023 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-36146896

RESUMO

The Javan gibbon, Hylobates moloch, is an endangered gibbon species restricted to the forest remnants of western and central Java, Indonesia, and one of the rarest of the Hylobatidae family. Hylobatids consist of 4 genera (Holoock, Hylobates, Symphalangus, and Nomascus) that are characterized by different numbers of chromosomes, ranging from 38 to 52. The underlying cause of this karyotype plasticity is not entirely understood, at least in part, due to the limited availability of genomic data. Here we present the first scaffold-level assembly for H. moloch using a combination of whole-genome Illumina short reads, 10X Chromium linked reads, PacBio, and Oxford Nanopore long reads and proximity-ligation data. This Hylobates genome represents a valuable new resource for comparative genomics studies in primates.


Assuntos
Genoma , Hylobates , Animais , Hylobates/genética , Florestas , Espécies em Perigo de Extinção , Indonésia
6.
Proc Natl Acad Sci U S A ; 117(32): 19328-19338, 2020 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-32690705

RESUMO

Co-option of transposable elements (TEs) to become part of existing or new enhancers is an important mechanism for evolution of gene regulation. However, contributions of lineage-specific TE insertions to recent regulatory adaptations remain poorly understood. Gibbons present a suitable model to study these contributions as they have evolved a lineage-specific TE called LAVA (LINE-AluSz-VNTR-AluLIKE), which is still active in the gibbon genome. The LAVA retrotransposon is thought to have played a role in the emergence of the highly rearranged structure of the gibbon genome by disrupting transcription of cell cycle genes. In this study, we investigated whether LAVA may have also contributed to the evolution of gene regulation by adopting enhancer function. We characterized fixed and polymorphic LAVA insertions across multiple gibbons and found 96 LAVA elements overlapping enhancer chromatin states. Moreover, LAVA was enriched in multiple transcription factor binding motifs, was bound by an important transcription factor (PU.1), and was associated with higher levels of gene expression in cis We found gibbon-specific signatures of purifying/positive selection at 27 LAVA insertions. Two of these insertions were fixed in the gibbon lineage and overlapped with enhancer chromatin states, representing putative co-opted LAVA enhancers. These putative enhancers were located within genes encoding SETD2 and RAD9A, two proteins that facilitate accurate repair of DNA double-strand breaks and prevent chromosomal rearrangement mutations. Co-option of LAVA in these genes may have influenced regulation of processes that preserve genome integrity. Our findings highlight the importance of considering lineage-specific TEs in studying evolution of gene regulatory elements.


Assuntos
Genoma , Hylobates/genética , Retroelementos , Animais , Cromatina/genética , Evolução Molecular , Regulação da Expressão Gênica , Hylobates/classificação , Mutagênese Insercional , Sequências Reguladoras de Ácido Nucleico , Especificidade da Espécie
7.
J Deaf Stud Deaf Educ ; 28(3): 267-279, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-36906841

RESUMO

READY is a self-report prospective longitudinal study of deaf and hard of hearing (DHH) young people aged 16 to 19 years on entry. Its overarching aim is to explore the risk and protective factors for successful transition to adulthood. This article introduces the cohort of 163 DHH young people, background characteristics and study design. Focusing on self-determination and subjective well-being only, those who completed the assessments in written English (n = 133) score significantly lower than general population comparators. Sociodemographic variables explain very little of the variance in well-being scores; higher levels of self-determination are a predictor of higher levels of well-being, outweighing the influence of any background characteristics. Although women and those who are LGBTQ+ have statistically significantly lower well-being scores, these aspects of their identity are not predictive risk factors. These results add to the case for self-determination interventions to support better well-being amongst DHH young people.


Assuntos
Surdez , Perda Auditiva , Pessoas com Deficiência Auditiva , Humanos , Feminino , Adolescente , Estudos Prospectivos , Estudos Longitudinais , Fatores de Risco
8.
Mol Biol Evol ; 38(9): 3972-3992, 2021 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-33983366

RESUMO

Centromeres are functionally conserved chromosomal loci essential for proper chromosome segregation during cell division, yet they show high sequence diversity across species. Despite their variation, a near universal feature of centromeres is the presence of repetitive sequences, such as DNA satellites and transposable elements (TEs). Because of their rapidly evolving karyotypes, gibbons represent a compelling model to investigate divergence of functional centromere sequences across short evolutionary timescales. In this study, we use ChIP-seq, RNA-seq, and fluorescence in situ hybridization to comprehensively investigate the centromeric repeat content of the four extant gibbon genera (Hoolock, Hylobates, Nomascus, and Siamang). In all gibbon genera, we find that CENP-A nucleosomes and the DNA-proteins that interface with the inner kinetochore preferentially bind retroelements of broad classes rather than satellite DNA. A previously identified gibbon-specific composite retrotransposon, LAVA, known to be expanded within the centromere regions of one gibbon genus (Hoolock), displays centromere- and species-specific sequence differences, potentially as a result of its co-option to a centromeric function. When dissecting centromere satellite composition, we discovered the presence of the retroelement-derived macrosatellite SST1 in multiple centromeres of Hoolock, whereas alpha-satellites represent the predominate satellite in the other genera, further suggesting an independent evolutionary trajectory for Hoolock centromeres. Finally, using de novo assembly of centromere sequences, we determined that transcripts originating from gibbon centromeres recapitulate the species-specific TE composition. Combined, our data reveal dynamic shifts in the repeat content that define gibbon centromeres and coincide with the extensive karyotypic diversity within this lineage.


Assuntos
Centrômero , Hylobates , Animais , Centrômero/genética , DNA Satélite/genética , Hylobates/genética , Hibridização in Situ Fluorescente , Retroelementos/genética
9.
Genome Res ; 28(7): 983-997, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29914971

RESUMO

The relationship between evolutionary genome remodeling and the three-dimensional structure of the genome remain largely unexplored. Here, we use the heavily rearranged gibbon genome to examine how evolutionary chromosomal rearrangements impact genome-wide chromatin interactions, topologically associating domains (TADs), and their epigenetic landscape. We use high-resolution maps of gibbon-human breaks of synteny (BOS), apply Hi-C in gibbon, measure an array of epigenetic features, and perform cross-species comparisons. We find that gibbon rearrangements occur at TAD boundaries, independent of the parameters used to identify TADs. This overlap is supported by a remarkable genetic and epigenetic similarity between BOS and TAD boundaries, namely presence of CpG islands and SINE elements, and enrichment in CTCF and H3K4me3 binding. Cross-species comparisons reveal that regions orthologous to BOS also correspond with boundaries of large (400-600 kb) TADs in human and other mammalian species. The colocalization of rearrangement breakpoints and TAD boundaries may be due to higher chromatin fragility at these locations and/or increased selective pressure against rearrangements that disrupt TAD integrity. We also examine the small portion of BOS that did not overlap with TAD boundaries and gave rise to novel TADs in the gibbon genome. We postulate that these new TADs generally lack deleterious consequences. Last, we show that limited epigenetic homogenization occurs across breakpoints, irrespective of their time of occurrence in the gibbon lineage. Overall, our findings demonstrate remarkable conservation of chromatin interactions and epigenetic landscape in gibbons, in spite of extensive genomic shuffling.


Assuntos
Epigênese Genética/genética , Genoma/genética , Animais , Cromatina/genética , Ilhas de CpG/genética , Epigenômica/métodos , Genômica/métodos , Humanos , Sintenia/genética
10.
Chromosome Res ; 28(1): 111-127, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32146545

RESUMO

Innovations in high-throughout sequencing approaches are being marshaled to both reveal the composition of the abundant and heterogeneous noncoding RNAs that populate cell nuclei and lend insight to the mechanisms by which noncoding RNAs influence chromosome biology and gene expression. This review focuses on some of the recent technological developments that have enabled the isolation of nascent transcripts and chromatin-associated and DNA-interacting RNAs. Coupled with emerging genome assembly and analytical approaches, the field is poised to achieve a comprehensive catalog of nuclear noncoding RNAs, including those derived from repetitive regions within eukaryotic genomes. Herein, particular attention is paid to the challenges and advances in the sequence analyses of repeat and transposable element-derived noncoding RNAs and in ascribing specific function(s) to such RNAs.


Assuntos
RNA não Traduzido , Sequências Repetitivas de Ácido Nucleico , Animais , Núcleo Celular/genética , Núcleo Celular/metabolismo , DNA/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Interferência de RNA , Transcriptoma
11.
BMC Genomics ; 21(1): 656, 2020 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-32967626

RESUMO

BACKGROUND: One of the biggest challenges in chromosome biology is to understand the occurrence and complex genetics of the extra, non-essential karyotype elements, commonly known as supernumerary or B chromosomes (Bs). The non-Mendelian inheritance and non-pairing abilities of B chromosomes make them an interesting model for genomics studies, thus bringing to bear different questions about their genetic composition, evolutionary survival, maintenance and functional role inside the cell. This study uncovers these phenomena in multiple species that we considered as representative organisms of both vertebrate and invertebrate models for B chromosome analysis. RESULTS: We sequenced the genomes of three animal species including two fishes Astyanax mexicanus and Astyanax correntinus, and a grasshopper Abracris flavolineata, each with and without Bs, and identified their B-localized genes and repeat contents. We detected unique sequences occurring exclusively on Bs and discovered various evolutionary patterns of genomic rearrangements associated to Bs. In situ hybridization and quantitative polymerase chain reactions further validated our genomic approach confirming detection of sequences on Bs. The functional annotation of B sequences showed that the B chromosome comprises regions of gene fragments, novel genes, and intact genes, which encode a diverse set of functions related to important biological processes such as metabolism, morphogenesis, reproduction, transposition, recombination, cell cycle and chromosomes functions which might be important for their evolutionary success. CONCLUSIONS: This study reveals the genomic structure, composition and function of Bs, which provide new insights for theories of B chromosome evolution. The selfish behavior of Bs seems to be favored by gained genes/sequences.


Assuntos
Cromossomos/genética , Evolução Molecular , Rearranjo Gênico , Animais , Characidae/genética , Gafanhotos/genética
12.
Chromosome Res ; 27(3): 237-252, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30771198

RESUMO

A common feature of eukaryotic centromeres is the presence of large tracts of tandemly arranged repeats, known as satellite DNA. However, these centromeric repeats appear to experience rapid evolution under forces such as molecular drive and centromere drive, seemingly without consequence to the integrity of the centromere. Moreover, blocks of heterochromatin within the karyotype, including the centromere, are hotspots for chromosome rearrangements that may drive speciation events by contributing to reproductive isolation. However, the relationship between the evolution of heterochromatic sequences and the karyotypic dynamics of these regions remains largely unknown. Here, we show that a single conserved satellite DNA sequence in the order Rodentia of the genus Peromyscus localizes to recurrent sites of chromosome rearrangements and heterochromatic amplifications. Peromyscine species display several unique features of chromosome evolution compared to other Rodentia, including stable maintenance of a strict chromosome number of 48 among all known species in the absence of any detectable interchromosomal rearrangements. Rather, the diverse karyotypes of Peromyscine species are due to intrachromosomal variation in blocks of repeated DNA content. Despite wide variation in the copy number and location of repeat blocks among different species, we find that a single satellite monomer maintains a conserved sequence and homogenized tandem repeat structure, defying predictions of molecular drive. The conservation of this satellite monomer results in common, abundant, and large blocks of chromatin that are homologous among chromosomes within one species and among diverged species. Thus, such a conserved repeat may have facilitated the retention of polymorphic chromosome variants within individuals and intrachromosomal rearrangements between species-both factors that have previously been hypothesized to contribute towards the extremely wide range of ecological adaptations that this genus exhibits.


Assuntos
Centrômero , DNA Satélite/genética , Cariótipo , Peromyscus/genética , Animais , Sequência Conservada , Evolução Molecular , Variação Genética , Heterocromatina , Especificidade da Espécie
13.
Plant Physiol ; 176(2): 1547-1558, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29150558

RESUMO

A major question in plant biology concerns the specification and functional differentiation of cell types. This is in the context of constraints imposed by networks of cell walls that both adhere cells and contribute to the form and function of developing organs. Here, we report the identification of a glycan epitope that is specific to phloem sieve element cell walls in several systems. A monoclonal antibody, designated LM26, binds to the cell wall of phloem sieve elements in stems of Arabidopsis (Arabidopsis thaliana), Miscanthus x giganteus, and notably sugar beet (Beta vulgaris) roots where phloem identification is an important factor for the study of phloem unloading of Suc. Using microarrays of synthetic oligosaccharides, the LM26 epitope has been identified as a ß-1,6-galactosyl substitution of ß-1,4-galactan requiring more than three backbone residues for optimized recognition. This branched galactan structure has previously been identified in garlic (Allium sativum) bulbs in which the LM26 epitope is widespread throughout most cell walls including those of phloem cells. Garlic bulb cell wall material has been used to confirm the association of the LM26 epitope with cell wall pectic rhamnogalacturonan-I polysaccharides. In the phloem tissues of grass stems, the LM26 epitope has a complementary pattern to that of the LM5 linear ß-1,4-galactan epitope, which is detected only in companion cell walls. Mechanical probing of transverse sections of M x giganteus stems and leaves by atomic force microscopy indicates that phloem sieve element cell walls have a lower indentation modulus (indicative of higher elasticity) than companion cell walls.


Assuntos
Arabidopsis/metabolismo , Beta vulgaris/metabolismo , Galactanos/metabolismo , Poaceae/metabolismo , Anticorpos Monoclonais , Arabidopsis/citologia , Beta vulgaris/citologia , Parede Celular/metabolismo , Epitopos , Galactanos/química , Galactanos/imunologia , Fenômenos Mecânicos , Análise em Microsséries , Microscopia de Força Atômica , Floema/citologia , Floema/metabolismo , Folhas de Planta/citologia , Folhas de Planta/metabolismo , Raízes de Plantas/citologia , Raízes de Plantas/metabolismo , Caules de Planta/citologia , Caules de Planta/metabolismo , Poaceae/citologia
14.
Chromosome Res ; 26(1-2): 5-23, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29332159

RESUMO

Although it was nearly 70 years ago when transposable elements (TEs) were first discovered "jumping" from one genomic location to another, TEs are now recognized as contributors to genomic innovations as well as genome instability across a wide variety of species. In this review, we illustrate the ways in which active TEs, specifically retroelements, can create novel chromosome rearrangements and impact gene expression, leading to disease in some cases and species-specific diversity in others. We explore the ways in which eukaryotic genomes have evolved defense mechanisms to temper TE activity and the ways in which TEs continue to influence genome structure despite being rendered transpositionally inactive. Finally, we focus on the role of TEs in the establishment, maintenance, and stabilization of critical, yet rapidly evolving, chromosome features: eukaryotic centromeres. Across centromeres, specific types of TEs participate in genomic conflict, a balancing act wherein they are actively inserting into centromeric domains yet are harnessed for the recruitment of centromeric histones and potentially new centromere formation.


Assuntos
Elementos de DNA Transponíveis/genética , Genoma/genética , Centrômero/genética , DNA Satélite , Humanos , Retroelementos/genética
15.
J Immunol ; 199(1): 336-347, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28550198

RESUMO

Allogeneic hematopoietic cell transplantation (allo-HCT) is a potentially curative treatment for hematologic and immunologic diseases. However, graft-versus-host disease (GVHD) may develop when donor-derived T cells recognize and damage genetically distinct normal host tissues. In addition to TCR signaling, costimulatory pathways are involved in T cell activation. CD27 is a TNFR family member expressed on T cells, and its ligand, CD70, is expressed on APCs. The CD27/CD70 costimulatory pathway was shown to be critical for T cell function and survival in viral infection models. However, the role of this pathway in allo-HCT is previously unknown. In this study, we have examined its contribution in GVHD pathogenesis. Surprisingly, Ab blockade of CD70 after allo-HCT significantly increases GVHD. Interestingly, whereas donor T cell- or bone marrow-derived CD70 plays no role in GVHD, host-derived CD70 inhibits GVHD as CD70-/- hosts show significantly increased GVHD. This is evidenced by reduced survival, more severe weight loss, and increased histopathologic damage compared with wild-type hosts. In addition, CD70-/- hosts have higher levels of proinflammatory cytokines TNF-α, IFN-γ, IL-2, and IL-17. Moreover, accumulation of donor CD4+ and CD8+ effector T cells is increased in CD70-/- versus wild-type hosts. Mechanistic analyses suggest that CD70 expressed by host hematopoietic cells is involved in the control of alloreactive T cell apoptosis and expansion. Together, our findings demonstrate that host CD70 serves as a unique negative regulator of allogeneic T cell response by contributing to donor T cell apoptosis and inhibiting expansion of donor effector T cells.


Assuntos
Ligante CD27/imunologia , Doença Enxerto-Hospedeiro/imunologia , Ativação Linfocitária , Linfócitos T/fisiologia , Animais , Apoptose , Ligante CD27/deficiência , Ligante CD27/genética , Regulação da Expressão Gênica , Doença Enxerto-Hospedeiro/fisiopatologia , Interferon gama/imunologia , Interleucina-17/imunologia , Interleucina-2/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Baço/citologia , Linfócitos T/imunologia , Linfócitos T/patologia , Transplante Homólogo , Fator de Necrose Tumoral alfa/imunologia
16.
J Immunol ; 199(10): 3700-3710, 2017 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-29046346

RESUMO

The CD27-CD70 pathway is known to provide a costimulatory signal, with CD70 expressed on APCs and CD27 functions on T cells. Although CD70 is also expressed on activated T cells, it remains unclear how T cell-derived CD70 affects T cell function. Therefore, we have assessed the role of T cell-derived CD70 using adoptive-transfer models, including autoimmune inflammatory bowel disease and allogeneic graft-versus-host disease. Surprisingly, compared with wild-type T cells, CD70-/- T cells caused more severe inflammatory bowel disease and graft-versus-host disease and produced higher levels of inflammatory cytokines. Mechanistic analyses reveal that IFN-γ induces CD70 expression in T cells, and CD70 limits T cell expansion via a regulatory T cell-independent mechanism that involves caspase-dependent T cell apoptosis and upregulation of inhibitory immune checkpoint molecules. Notably, T cell-intrinsic CD70 signaling contributes, as least in part, to the inhibitory checkpoint function. Overall, our findings demonstrate for the first time, to our knowledge, that T cell-derived CD70 plays a novel immune checkpoint role in inhibiting inflammatory T cell responses. This study suggests that T cell-derived CD70 performs a critical negative feedback function to downregulate inflammatory T cell responses.


Assuntos
Ligante CD27/metabolismo , Doença Enxerto-Hospedeiro/imunologia , Doenças Inflamatórias Intestinais/imunologia , Interferon gama/metabolismo , Linfócitos T/imunologia , Transferência Adotiva , Animais , Apoptose , Ligante CD27/genética , Caspases/metabolismo , Proliferação de Células , Células Cultivadas , Citocinas/metabolismo , Mediadores da Inflamação/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais , Linfócitos T/transplante , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral/metabolismo
17.
Chromosoma ; 126(2): 313-323, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27169573

RESUMO

Supernumerary chromosomes have been studied in many species of eukaryotes, including the cichlid fish, Astatotilapia latifasciata. However, there are many unanswered questions about the maintenance, inheritance, and functional aspects of supernumerary chromosomes. The cichlid family has been highlighted as a model for evolutionary studies, including those that focus on mechanisms of chromosome evolution. Individuals of A. latifasciata are known to carry up to two B heterochromatic isochromosomes that are enriched in repetitive DNA and contain few intact gene sequences. We isolated and characterized a transcriptionally active repeated DNA, called B chromosome noncoding DNA (BncDNA), highly represented across all B chromosomes of A. latifasciata. BncDNA transcripts are differentially processed among six different tissues, including the production of smaller transcripts, indicating transcriptional variation may be linked to B chromosome presence and sexual phenotype. The transcript lengths and lack of similarity with known protein/gene sequences indicate BncRNA might represent a novel long noncoding RNA family (lncRNA). The potential for interaction between BncRNA and known miRNAs were computationally predicted, resulting in the identification of possible binding of this sequence in upregulated miRNAs related to the presence of B chromosomes. In conclusion, Bnc is a transcriptionally active repetitive DNA enriched in B chromosomes with potential action over B chromosome maintenance in somatic cells and meiotic drive in gametic cells.


Assuntos
Cromossomos , Ciclídeos/genética , RNA não Traduzido , Sequências Repetitivas de Ácido Nucleico , Transcrição Gênica , Animais , Análise por Conglomerados , Biologia Computacional/métodos , Evolução Molecular , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Genômica/métodos , Masculino
18.
Biol Blood Marrow Transplant ; 24(12): 2397-2408, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30006303

RESUMO

Graft-versus-host disease (GVHD) is a serious complication after allogeneic hematopoietic cell transplantation (allo-HCT) that limits the therapeutic potential of this treatment. Host antigen-presenting cells (APCs) play a vital role in activating donor T cells that subsequently use granzyme B (GzmB) and other cytotoxic molecules to damage host normal tissues. Serine protease inhibitor 6 (Spi6), known as the sole endogenous inhibitor of GzmB, has been implicated in protecting T cells and APCs against GzmB-inflicted damage. In this study we used murine models to examine the previously unknown role of host-derived Spi6 in GVHD pathogenesis. Our results indicated that host Spi6 deficiency exacerbated GVHD as evidenced by significantly increased lethality and clinical and histopathologic scores. Using bone marrow chimera system, we found that Spi6 in nonhematopoietic tissue played a dominant role in protecting against GVHD and was significantly upregulated in intestinal epithelial cells after allo-HCT, whereas Spi6 in hematopoietic APCs surprisingly suppressed alloreactive T cell response. Interestingly, the protective effect of Spi6 and its expression in intestinal epithelial cells appeared to be independent of donor-derived GzmB. We used in silico modeling to explore potential targets of Spi6. Interaction tested in silico demonstrated that Spi6 could inhibit caspase-3 and caspase-8 with the same functional loop that inhibits GzmB but was not capable of forming stable interaction with caspase-1 or granzyme A. Using an in vitro co-culture system, we further identified that donor T cell-derived IFN-γ was important for inducing Spi6 expression in an intestinal epithelial cell line. Altogether, our data indicate that host Spi6 plays a novel, GzmB-independent role in regulating alloreactive T cell response and protecting intestinal epithelial cells. Therefore, enhancing host-derived Spi6 function has the potential to reduce GVHD.


Assuntos
Células Epiteliais/metabolismo , Doença Enxerto-Hospedeiro/terapia , Granzimas/metabolismo , Intestinos/citologia , Inibidores de Serina Proteinase/uso terapêutico , Animais , Doença Enxerto-Hospedeiro/patologia , Granzimas/genética , Humanos , Camundongos , Inibidores de Serina Proteinase/farmacologia
19.
Mamm Genome ; 29(5-6): 344-352, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29947964

RESUMO

Species across the rodent genus Peromyscus have become prominent models for studying diverse mechanistic and evolutionary processes, including chromosome evolution, infectious disease transmission and human health, ecological adaptation, coat color variation, and parental care. Supporting such diverse research programs has been the development of genetic and genomic resources for species within this genus, including genome data, interspecific chromosome homologies, and a recently developed genetic map. Based on interspecific hybrids between the deer mouse (Peromyscus maniculatus bairdii) and the old-field, or beach, mouse (Peromyscus polionotus) and backcross progeny to Peromyscus maniculatus, a linkage map was developed based on 190 genes and 141 microsatellite loci. However, resolution of several linkage groups with respect to chromosome assignment was lacking and four chromosomes (8, 16, 20, and 21) were not clearly delineated with linkage data alone. The recent development of a high-density map for Peromyscus proved ineffective in resolving chromosome linkage for these four chromosomes. Herein we present an updated linkage map for Peromyscus maniculatus, including linkage group-chromosome assignments, using fluorescence in situ hybridization mapping of BACs and whole chromosome paints. We resolve the previously conflicting chromosome assignment of linkage groups to Chromosomes 8, 16, 20, and 21, and confirm the assignment of linkage groups to Chromosomes 18 and 22. This updated linkage map with validated chromosome assignment provides a solid foundation for chromosome nomenclature for this species.


Assuntos
Mapeamento Cromossômico , Cromossomos de Mamíferos , Ligação Genética , Peromyscus/genética , Animais , Coloração Cromossômica , Cruzamentos Genéticos , Feminino , Hibridização in Situ Fluorescente , Masculino , Camundongos
20.
Mol Ecol ; 27(19): 3783-3798, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29624756

RESUMO

Because sex chromosomes, by definition, carry genes that determine sex, mutations that alter their structural and functional stability can have immediate consequences for the individual by reducing fertility, but also for a species by altering the sex ratio. Moreover, the sex-specific segregation patterns of heteromorphic sex chromosomes make them havens for selfish genetic elements that not only create suboptimal sex ratios but can also foster sexual antagonism. Compensatory mutations to mitigate antagonism or return sex ratios to a Fisherian optimum can create hybrid incompatibility and establish reproductive barriers leading to species divergence. The destabilizing influence of these selfish elements is often manifest within populations as copy number variants (CNVs) in satellite repeats and transposable elements (TE) or as CNVs involving sex-determining genes, or genes essential to fertility and sex chromosome dosage compensation. This review catalogs several examples of well-studied sex chromosome CNVs in Drosophilids and mammals that underlie instances of meiotic drive, hybrid incompatibility and disruptions to sex differentiation and sex chromosome dosage compensation. While it is difficult to pinpoint a direct cause/effect relationship between these sex chromosome CNVs and speciation, it is easy to see how their effects in creating imbalances between the sexes, and the compensatory mutations to restore balance, can lead to lineage splitting and species formation.


Assuntos
Dosagem de Genes , Especiação Genética , Cromossomos Sexuais/genética , Animais , Variações do Número de Cópias de DNA , Elementos de DNA Transponíveis , Feminino , Masculino , Meiose , Sequências Repetitivas de Ácido Nucleico , Isolamento Reprodutivo , Processos de Determinação Sexual , Razão de Masculinidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA