Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Med Radiat Sci ; 71(1): 114-122, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37740640

RESUMO

INTRODUCTION: The magnetic resonance linear accelerator (MRL) combines both magnetic resonance imaging and a linear accelerator, allowing for daily treatment adaptation. This study aimed to assess the impact of radiologist-delivered training in magnetic resonance (MR) contouring of relevant structures within the male pelvis. METHODS: Two radiation oncologists, two radiation oncology registrars and seven radiation therapists completed contouring on 10 male pelvis MR datasets both pre- and post-training. A 2-hour MR anatomy training session was delivered by a radiologist, who also provided the 'gold standard' contours. The pre- and post-training contours were compared against the gold standard with Dice similarity coefficient (DSC) and Hausdorff distances calculated; and the pre- and post-confidence scores and timing were compared. RESULTS: The improvement in DSC were significant in prostate, rectum and seminal vesicles, with a post-training median DSC of 0.87 ± 0.06, 0.92 ± 0.04 and 0.80 ± 0.14, respectively. The median Hausdorff improved with a median of 1.46 ± 0.78 mm, 0.52 ± 0.32 mm and 1.11 ± 0.86 mm for prostate, rectum and seminal vesicles, respectively. Bladder concordance was high both pre- and post-training. Urethra contours improved post-training, however, remained difficult to contour with a median post-DSC of 0.51 ± 0.24. Overall, confidence scoring improved (P < 0.001) and timing decreased by an average of 4.4 ± 16.4 min post-training. CONCLUSION: Radiologist-delivered training improved concordance of male pelvis contouring on MR datasets. Further work is required in the identification of urethra on MRs. These findings are of importance in the MRL adaptive workflow.


Assuntos
Neoplasias da Próstata , Masculino , Humanos , Planejamento da Radioterapia Assistida por Computador/métodos , Pelve/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Radio-Oncologistas
2.
Phys Eng Sci Med ; 45(2): 457-473, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35235188

RESUMO

Magnetic resonance-guided radiotherapy technology is relatively new and commissioning publications, quality assurance (QA) protocols and commercial products are limited. This work provides guidance for implementation measurements that may be performed on the Elekta Unity MR-Linac (Elekta, Stockholm, Sweden). Adaptations of vendor supplied phantoms facilitated determination of gantry angle accuracy and linac isocentre, whereas in-house developed phantoms were used for end-to-end testing and anterior coil attenuation measurements. Third-party devices were used for measuring beam quality, reference dosimetry and during treatment plan commissioning; however, due to several challenges, variations on standard techniques were required. Gantry angle accuracy was within 0.1°, confirmed with pixel intensity profiles, and MV isocentre diameter was < 0.5 mm. Anterior coil attenuation was approximately 0.6%. Beam quality as determined by TPR20,10 was 0.705 ± 0.001, in agreement with treatment planning system (TPS) calculations, and gamma comparison against the TPS for a 22.0 × 22.0 cm2 field was above 95.0% (2.0%, 2.0 mm). Machine output was 1.000 ± 0.002 Gy per 100 MU, depth 5.0 cm. During treatment plan commissioning, sub-standard results indicated issues with machine behaviour. Once rectified, gamma comparisons were above 95.0% (2.0%, 2.0 mm). Centres which may not have access to specialized equipment can use in-house developed phantoms, or adapt those supplied by the vendor, to perform commissioning work and confirm operation of the MRL within published tolerances. The plan QA techniques used in this work can highlight issues with machine behaviour when appropriate gamma criteria are set.


Assuntos
Aceleradores de Partículas , Radioterapia Guiada por Imagem , Raios gama , Imagens de Fantasmas , Radiometria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA