Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Anal Chem ; 96(22): 8875-8879, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38776223

RESUMO

This work presents a benchtop method for collecting the room temperature gas phase infrared (IR) action spectra of protonated amino acids and their isomers. The adopted setup uses a minimally modified commercial electrospray ionization linear ion trap mass spectrometer (ESI-LIT-MS) coupled to a broadband continuous wave (cw) quantum cascade laser (QCL) source. This approach leverages messenger assisted action spectroscopic techniques using water-tagged molecular ions with complex formation, irradiation, and subsequent analysis, all taking place within a single linear ion trap stage. This configuration thus circumvents the use of multiple mass selection and analysis stages, cryogenic buffer cells, and complex high-power laser systems typically called upon to execute these techniques. The benchtop action spectrometer is used to collect the 935-1600 cm-1 (6.2-10.7 µm) IR action spectrum of a collection of amino acids and a dipeptide with results cross referenced against literature examples obtained with a free electron laser source. Recorded IR spectra are used for the analysis of binary mixture samples composed of constitutional isomers α-alanine and ß-alanine with ratios determined to ∼4% measurement uncertainty without the aid of a front-end separation stage. This turn-key QCL-based approach is a major step in showing the viability of tag-based action spectroscopic techniques for use in future in situ planetary science sensors and general analytical applications.

2.
Anal Chem ; 93(16): 6375-6384, 2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33843199

RESUMO

We report a spectrometer employing optically switched dual-wavelength cavity ring-down spectroscopy (OSDW-CRDS) for high-precision measurements of methane isotope ratios. A waveguide optical switch rapidly alternated between two wavelengths to detect absorption by two isotopologues using near-infrared CRDS. This approach alleviated common-mode noise that originated primarily from temperature and frequency fluctuations. We demonstrated the measurement of δD in natural abundance methane to a precision of 2.3 ‰, despite the lack of active temperature or frequency stabilization of the cavity. The ability of alternating OSDW-CRDS to improve the isotope precision in the absence of cavity stabilization were measured by comparing the Allan deviation with that obtained when frequency-stabilizing the cavity length. The system can be extended to a wide variety of applications such as isotope analysis of other species, kinetic isotope effects, ortho-para ratio measurements, and isomer abundance measurements. Furthermore, our technique can be extended to multiple isotope analysis or two species involved in kinetics studies through the use of multiport or high-speed optical switches, respectively.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA