Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 18(3): e2103138, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34761508

RESUMO

Apolipoproteins are an important class of proteins because they provide a so-called stealth effect to nanoparticles. The stealth effect on nanocarriers leads to a reduced unspecific uptake into immune cells and thereby to a prolonged blood circulation time. Herein, a novel strategy to bind apolipoproteins specifically on nanoparticles by adjusting the temperature during their incubation in human plasma is presented. This specific binding, in turn, allows a control of the stealth behavior of the nanoparticles. Nanoparticles with a well-defined poly(N-isopropylacrylamide) shell are prepared, displaying a reversible change of hydrophobicity at a temperature around 32 °C. It is shown by label-free quantitative liquid chromatography-mass spectrometry that the nanoparticles are largely enriched with apolipoprotein J (clusterin) at 25 °C while they are enriched with apolipoprotein A1 and apolipoprotein E at 37 °C. The temperature-dependent protein binding is found to significantly influence the uptake of the nanoparticles by RAW264.7 and HeLa cells. The findings imply that the functionalization of nanoparticles with temperature-responsive materials is a suitable method for imparting stealth properties to nanocarriers for drug-delivery.


Assuntos
Nanopartículas , Coroa de Proteína , Apolipoproteínas , Células HeLa , Humanos , Nanopartículas/química , Coroa de Proteína/química , Temperatura
2.
J Colloid Interface Sci ; 630(Pt A): 965-972, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36327712

RESUMO

One of the critical features of biomedical material design is controlling the plasma protein adsorption to modulate the material behavior in biological media. Protein adsorption is highly influenced by the material surfaces and the proteins present in the biological medium. Thus, it is necessary to study protein-surface interactions that eventually take place on nanomaterials introduced into the body by the use of human plasma. However, very little information is available about human plasma interaction with planar surfaces under physiological conditions. Due to the limitation of the current characterization techniques to investigate the complicated interaction between the complex milieu of plasma proteins and planar materials, most efforts have focused on single proteins. To face this challenge, we have developed a new methodology based on the combination of quartz crystal microbalance with dissipation monitoring (QCM-D) and liquid chromatography coupled with mass spectrometry (LC-MS) to obtain information about protein-surface interactions on planar surfaces. First, QCM-D allowed us to determine the adsorbed protein mass and layer thickness. After detaching the proteins by a surfactant treatment, LC-MS analysis revealed the proteomic profile. Here, we have investigated three base materials, polystyrene (PS), gold (Au), and silica (SiO2) with or without precoating and compared the protein profiles.


Assuntos
Técnicas de Microbalança de Cristal de Quartzo , Dióxido de Silício , Humanos , Técnicas de Microbalança de Cristal de Quartzo/métodos , Adsorção , Propriedades de Superfície , Proteômica
3.
Acta Biomater ; 172: 355-368, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37839632

RESUMO

The intracellular protein corona has not been fully investigated in the field of nanotechnology-biology (nano-bio) interactions. To effectively understand intracellular protein corona formation and dynamics, we established a workflow to isolate the intracellular protein corona at different uptake times of two nanoparticles - magnetic hydroxyethyl starch nanoparticles (HES-NPs) and magnetic human serum albumin nanocapsules (HSA-NCs). We performed label-free quantitative LC-MS proteomics to analyze the composition of the intracellular protein corona and correlated our findings with results from conventional methods for intracellular trafficking of nanocarriers, such as flow cytometry, transmission electron microscopy (TEM), and confocal microscopy (cLSM). We determined the evolution of the intracellular protein corona. At different time stages the protein corona of the HES-NPs with a slower uptake changed, but there were fewer changes in that of the HSA-NCs with a more rapid uptake. We identified proteins that are involved in macropinocytosis (RAC1, ASAP2) as well as caveolin. This was confirmed by blocking experiments and by TEM studies. The investigated nanocarrier predominantly trafficked from early endosomes as determined by RAB5 identification in proteomics and in cLSM to late endosomes/lysosomes (RAB7, LAMP1, cathepsin K and HSP 90-beta) We further demonstrated differences between nanoparticles with slower and faster uptake kinetics and determined the associated proteome at different time points. Analysis of the intracellular protein corona provides us with effective data to examine the intracellular trafficking of nanocarriers used in efficient drug delivery and intracellular applications. STATEMENT OF SIGNIFICANCE: Many research papers focus on the protein corona on nanoparticles formed in biological fluids, but there are hardly any articles dealing with proteins that come in contact with nanoparticles inside cells. The "intracellular protein corona" studied here is a far more complex and highly demanding field. Most nanocarriers are designed to be taken up into cells. Given this, we chose two different nanocarriers to reveal changes in the proteins in dendritic cells during contact at specific times. Further studies will allow us to examine molecular target proteins using these methods. Our research is a significant addition towards the goal of understanding and thus improving the efficacy of drug nanocarriers.


Assuntos
Nanocápsulas , Nanopartículas , Coroa de Proteína , Humanos , Proteômica , Nanopartículas/metabolismo , Proteoma , Albumina Sérica Humana , Proteínas Ativadoras de GTPase
4.
J Extracell Vesicles ; 12(12): e12399, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38124271

RESUMO

The influence of a protein corona on the uptake of nanoparticles in cells has been demonstrated in various publications over the last years. Extracellular vesicles (EVs), can be seen as natural nanoparticles. However, EVs are produced under different cell culture conditions and little is known about the protein corona forming on EVs and its influence on their uptake by target cells. Here, we use a proteomic approach in order to analyze the protein composition of the EVs themselves and the protein composition of a human blood plasma protein corona around EVs. Moreover, we analyze the influence of the protein corona on EV uptake into human monocytes and compare it with the influence on the uptake of engineered liposomes. We show that the presence of a protein corona increases the uptake of EVs in human monocytes. While for liposomes this seems to be triggered by the presence of immunoglobulins in the protein corona, for EVs blocking the Fc receptors on monocytes did not show an influence of uptake. Therefore, other mechanisms of docking to the cell membrane and uptake are most like involved, demonstrating a clear difference between EVs and liposomes as technically produced nanocarriers.


Assuntos
Vesículas Extracelulares , Coroa de Proteína , Humanos , Vesículas Extracelulares/metabolismo , Coroa de Proteína/metabolismo , Lipossomos , Proteômica , Transporte Biológico
5.
Cells ; 11(15)2022 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-35954168

RESUMO

Cell therapy is an important new method in medicine and is being used for the treatment of an increasing number of diseases. The challenge here is the precise tracking of cells in the body and their visualization. One method to visualize cells more easily with current methods is their labeling with nanoparticles before injection. However, for a safe and sufficient cell labeling, the nanoparticles need to remain in the cell and not be exocytosed. Here, we test a glucose-PEG-coated gold nanoparticle for the use of such a cell labeling. To this end, we investigated the nanoparticle exocytosis behavior from PLX-PAD cells, a cell type currently in clinical trials as a potential therapeutic agent. We showed that the amount of exocytosed gold from the cells was influenced by the uptake time and loading amount. This observation will facilitate the safe labeling of cells with nanoparticles in the future and contribute to stem cell therapy research.


Assuntos
Células-Tronco Mesenquimais , Nanopartículas Metálicas , Exocitose , Ouro , Células-Tronco Mesenquimais/metabolismo , Células Estromais
6.
Nanoscale ; 14(1): 86-98, 2021 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-34897345

RESUMO

Highly transparent CeO2/polycarbonate surfaces were fabricated that prevent adhesion, proliferation, and the spread of bacteria. CeO2 nanoparticles with diameters of 10-15 nm and lengths of 100-200 nm for this application were prepared by oxidizing aqueous dispersions of Ce(OH)3 with H2O2 in the presence of nitrilotriacetic acid (NTA) as the capping agent. The surface-functionalized water-dispersible CeO2 nanorods showed high catalytic activity in the halogenation reactions, which makes them highly efficient functional mimics of haloperoxidases. These enzymes are used in nature to prevent the formation of biofilms through the halogenation of signaling compounds that interfere with bacterial cell-cell communication ("quorum sensing"). Bacteria-repellent CeO2/polycarbonate plates were prepared by dip-coating plasma-treated polycarbonate plates in aqueous CeO2 particle dispersions. The quasi-enzymatic activity of the CeO2 coating was demonstrated using phenol red enzyme assays. The monolayer coating of CeO2 nanorods (1.6 µg cm-2) and the bacteria repellent properties were demonstrated by atomic force microscopy, biofilm assays, and fluorescence measurements. The engineered polymer surfaces have the ability to repel biofilms as green antimicrobials on plastics, where H2O2 is present in humid environments such as automotive parts, greenhouses, or plastic containers for rainwater.


Assuntos
Peróxido de Hidrogênio , Pseudomonas aeruginosa , Biofilmes , Plásticos , Cimento de Policarboxilato
7.
Chem Commun (Camb) ; 56(61): 8663-8666, 2020 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-32608398

RESUMO

Amphiphilic polyphenylene dendrimers (PPDs) with distinct lipophilic and positively or negatively charged surface groups were adsorbed onto liposomes and their impact on protein adsorption in blood plasma was studied. The PPD corona reduced binding of specific opsonins and increased the adsorption of proteins controlling cellular uptake based on their surface patches.


Assuntos
Proteínas Sanguíneas/química , Dendrímeros/química , Lipossomos/química , Coroa de Proteína/química , Adsorção , Proteínas Sanguíneas/metabolismo , Catálise , Dendrímeros/síntese química , Humanos , Nanopartículas/química , Paládio/química , Polímeros/química , Ligação Proteica , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA