Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Bioessays ; 44(8): e2200066, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35751450

RESUMO

Construction of the eukaryotic ribosome is a complex process in which a nascent ribosomal RNA (rRNA) emerging from RNA Polymerase I hierarchically folds into a native three-dimensional structure. Modular assembly of individual RNA domains through interactions with ribosomal proteins and a myriad of assembly factors permit efficient disentanglement of the error-prone RNA folding process. Following these dynamic events, long-range tertiary interactions are orchestrated to compact rRNA. A combination of genetic, biochemical, and structural studies is now providing clues into how a nascent rRNA is transformed into a functional ribosome with high precision. With this essay, we aim to draw attention to the poorly understood process of establishing correct RNA tertiary contacts during ribosome formation.


Assuntos
Dobramento de RNA , RNA Ribossômico , RNA Ribossômico/metabolismo , Proteínas Ribossômicas/metabolismo , Ribossomos/metabolismo
2.
Nucleic Acids Res ; 48(12): 6943-6953, 2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32463452

RESUMO

ARS2 is a conserved protein centrally involved in both nuclear RNA productive and destructive processes. To map features of ARS2 promoting RNA decay, we utilized two different RNA reporters, one of which depends on direct ARS2 tethering for its degradation. In both cases, ARS2 triggers a degradation phenotype aided by its interaction with the poly(A) tail exosome targeting (PAXT) connection. Interestingly, C-terminal amino acids of ARS2, responsible for binding the RNA 5'cap binding complex (CBC), become dispensable when ARS2 is directly tethered to the reporter RNA. In contrast, the Zinc-finger (ZnF) domain of ARS2 is essential for the decay of both reporters and consistently co-immunoprecipitation analyses reveal a necessity of this domain for the interaction of ARS2 with the PAXT-associated RNA helicase MTR4. Taken together, our results map the domains of ARS2 underlying two essential properties of the protein: its RNP targeting ability and its capacity to recruit the RNA decay machinery.


Assuntos
Proteínas Nucleares/genética , RNA Helicases/genética , Estabilidade de RNA/genética , RNA Mensageiro/genética , Complexo Multienzimático de Ribonucleases do Exossomo/genética , Células HEK293 , Humanos , Complexo Proteico Nuclear de Ligação ao Cap/genética , Proteínas Nucleares/química , Domínios Proteicos/genética , RNA Helicases/química , RNA Mensageiro/química , RNA Nuclear/química , RNA Nuclear/genética
3.
Nucleic Acids Res ; 48(11): 6210-6222, 2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32365182

RESUMO

The ribotoxin α-sarcin belongs to a family of ribonucleases that cleave the sarcin/ricin loop (SRL), a critical functional rRNA element within the large ribosomal subunit (60S), thereby abolishing translation. Whether α-sarcin targets the SRL only in mature 60S subunits remains unresolved. Here, we show that, in yeast, α-sarcin can cleave SRLs within late 60S pre-ribosomes containing mature 25S rRNA but not nucleolar/nuclear 60S pre-ribosomes containing 27S pre-rRNA in vivo. Conditional expression of α-sarcin is lethal, but does not impede early pre-rRNA processing, nuclear export and the cytoplasmic maturation of 60S pre-ribosomes. Thus, SRL-cleaved containing late 60S pre-ribosomes seem to escape cytoplasmic proofreading steps. Polysome analyses revealed that SRL-cleaved 60S ribosomal subunits form 80S initiation complexes, but fail to progress to the step of translation elongation. We suggest that the functional integrity of a α-sarcin cleaved SRL might be assessed only during translation.


Assuntos
Endorribonucleases/metabolismo , Proteínas Fúngicas/metabolismo , Subunidades Ribossômicas Maiores de Eucariotos/química , Subunidades Ribossômicas Maiores de Eucariotos/metabolismo , Ricina/metabolismo , Saccharomyces cerevisiae/metabolismo , Transporte Ativo do Núcleo Celular , Nucléolo Celular/efeitos dos fármacos , Nucléolo Celular/metabolismo , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Endorribonucleases/farmacologia , Proteínas Fúngicas/farmacologia , Biossíntese de Proteínas , RNA Ribossômico/metabolismo , Ricina/química , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/crescimento & desenvolvimento
4.
Methods Mol Biol ; 2533: 99-126, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35796985

RESUMO

The process of eukaryotic ribosome assembly stretches across the nucleolus, the nucleoplasm and the cytoplasm, and therefore relies on efficient nucleocytoplasmic transport. In yeast, the import machinery delivers ~140,000 ribosomal proteins every minute to the nucleus for ribosome assembly. At the same time, the export machinery facilitates translocation of ~2000 pre-ribosomal particles every minute through ~200 nuclear pore complexes (NPC) into the cytoplasm. Eukaryotic ribosome assembly also requires >200 conserved assembly factors, which transiently associate with pre-ribosomal particles. Their site(s) of action on maturing pre-ribosomes are beginning to be elucidated. In this chapter, we outline protocols that enable rapid biochemical isolation of pre-ribosomal particles for single particle cryo-electron microscopy (cryo-EM) and in vitro reconstitution of nuclear transport processes. We discuss cell-biological and genetic approaches to investigate how the ribosome assembly and the nucleocytoplasmic transport machineries collaborate to produce functional ribosomes.


Assuntos
Ribossomos , Proteínas de Saccharomyces cerevisiae , Transporte Ativo do Núcleo Celular , Microscopia Crioeletrônica , Proteínas Ribossômicas/metabolismo , Ribossomos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
5.
Nat Biotechnol ; 40(3): 382-390, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34663920

RESUMO

Phosphorylation is a critical post-translational modification involved in the regulation of almost all cellular processes. However, fewer than 5% of thousands of recently discovered phosphosites have been functionally annotated. In this study, we devised a chemical genetic approach to study the functional relevance of phosphosites in Saccharomyces cerevisiae. We generated 474 yeast strains with mutations in specific phosphosites that were screened for fitness in 102 conditions, along with a gene deletion library. Of these phosphosites, 42% exhibited growth phenotypes, suggesting that these are more likely functional. We inferred their function based on the similarity of their growth profiles with that of gene deletions and validated a subset by thermal proteome profiling and lipidomics. A high fraction exhibited phenotypes not seen in the corresponding gene deletion, suggestive of a gain-of-function effect. For phosphosites conserved in humans, the severity of the yeast phenotypes is indicative of their human functional relevance. This high-throughput approach allows for functionally characterizing individual phosphosites at scale.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Fosforilação , Processamento de Proteína Pós-Traducional/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
6.
Nat Commun ; 12(1): 4696, 2021 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-34349113

RESUMO

Productive ribosomal RNA (rRNA) compaction during ribosome assembly necessitates establishing correct tertiary contacts between distant secondary structure elements. Here, we quantify the response of the yeast proteome to low temperature (LT), a condition where aberrant mis-paired RNA folding intermediates accumulate. We show that, at LT, yeast cells globally boost production of their ribosome assembly machinery. We find that the LT-induced assembly factor, Puf6, binds to the nascent catalytic RNA-rich subunit interface within the 60S pre-ribosome, at a site that eventually loads the nuclear export apparatus. Ensemble Förster resonance energy transfer studies show that Puf6 mimics the role of Mg2+ to usher a unique long-range tertiary contact to compact rRNA. At LT, puf6 mutants accumulate 60S pre-ribosomes in the nucleus, thus unveiling Puf6-mediated rRNA compaction as a critical temperature-regulated rescue mechanism that counters rRNA misfolding to prime export competence.


Assuntos
Núcleo Celular/metabolismo , Proteínas de Ligação a RNA/metabolismo , Subunidades Ribossômicas Maiores de Eucariotos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transporte Ativo do Núcleo Celular , Temperatura Baixa , GTP Fosfo-Hidrolases/metabolismo , Mutação , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteoma/metabolismo , Dobramento de RNA , Precursores de RNA/química , Precursores de RNA/metabolismo , RNA Ribossômico/química , RNA Ribossômico/metabolismo , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Subunidades Ribossômicas Maiores de Eucariotos/química , Ribossomos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
7.
Elife ; 92020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31909713

RESUMO

Eukaryotic ribosome precursors acquire translation competence in the cytoplasm through stepwise release of bound assembly factors, and proofreading of their functional centers. In case of the pre-60S, these steps include removal of placeholders Rlp24, Arx1 and Mrt4 that prevent premature loading of the ribosomal protein eL24, the protein-folding machinery at the polypeptide exit tunnel (PET), and the ribosomal stalk, respectively. Here, we reveal that sequential ATPase and GTPase activities license release factors Rei1 and Yvh1 to trigger Arx1 and Mrt4 removal. Drg1-ATPase activity removes Rlp24 from the GTPase Nog1 on the pre-60S; consequently, the C-terminal tail of Nog1 is extracted from the PET. These events enable Rei1 to probe PET integrity and catalyze Arx1 release. Concomitantly, Nog1 eviction from the pre-60S permits peptidyl transferase center maturation, and allows Yvh1 to mediate Mrt4 release for stalk assembly. Thus, Nog1 co-ordinates the assembly, maturation and quality control of distant functional centers during ribosome formation.


Assuntos
Proteínas de Ligação ao GTP/genética , Proteínas Nucleares/genética , Proteínas Ribossômicas/metabolismo , Ribossomos/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Proteínas de Ligação ao GTP/metabolismo , Proteínas Nucleares/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA