Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Opt Lett ; 44(21): 5290-5293, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31674990

RESUMO

A broadband visible (VIS) blue-to-red, 10 GHz repetition rate frequency comb is generated by combined spectral broadening and triple-sum-frequency generation in an on-chip silicon nitride waveguide. Ultra-short pulses of 150 pJ pulse energy, generated via electro-optic modulation of a 1560 nm continuous-wave laser (CW), are coupled to a silicon nitride waveguide giving rise to a broadband near-infrared (NIR) supercontinuum. Modal phase matching inside the waveguide allows direct triple-sum-frequency transfer of the NIR supercontinuum into the VIS wavelength range covering more than 250 THz from below 400 to above 600 nm wavelength. This scheme directly links the mature optical telecommunication band technology to the VIS wavelength band and can find application in astronomical spectrograph calibration, as well as referencing of CW lasers.

2.
Opt Lett ; 43(23): 5745-5748, 2018 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-30499983

RESUMO

Optical frequency combs are key to optical precision measurements. While most frequency combs operate in the near-infrared (NIR) regime, many applications require combs at mid-infrared (MIR), visible (VIS), or even ultra-violet (UV) wavelengths. Frequency combs can be transferred to other wavelengths via nonlinear optical processes; however, this becomes exceedingly challenging for high-repetition-rate frequency combs. Here it is demonstrated that a synchronously driven high-Q microresonator with a second-order optical nonlinearity can efficiently convert high-repetition-rate NIR frequency combs to VIS, UV, and MIR wavelengths, providing new opportunities for microresonator and electro-optic combs in applications including molecular sensing, astronomy, and quantum optics.

3.
Nat Commun ; 11(1): 2402, 2020 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-32409631

RESUMO

Optical soliton molecules are bound states of solitons that arise from the balance between attractive and repulsive effects. Having been observed in systems ranging from optical fibres to mode-locked lasers, they provide insights into the fundamental interactions between solitons and the underlying dynamics of the nonlinear systems. Here, we enter the multistability regime of a Kerr microresonator to generate superpositions of distinct soliton states that are pumped at the same optical resonance, and report the discovery of heteronuclear dissipative Kerr soliton molecules. Ultrafast electrooptical sampling reveals the tightly short-range bound nature of such soliton molecules, despite comprising cavity solitons of dissimilar amplitudes, durations and carrier frequencies. Besides the significance they hold in resolving soliton dynamics in complex nonlinear systems, such heteronuclear soliton molecules yield coherent frequency combs whose unusual mode structure may find applications in metrology and spectroscopy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA