Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
J Mol Cell Cardiol ; 178: 36-50, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36963751

RESUMO

BACKGROUND: Dantrolene binds to the Leu601-Cys620 region of the N-terminal domain of cardiac ryanodine receptor (RyR2), which corresponds to the Leu590-Cys609 region of the skeletal ryanodine receptor, and suppresses diastolic Ca2+ leakage through RyR2. OBJECTIVE: We investigated whether the chronic administration of dantrolene prevented left ventricular (LV) remodeling and ventricular tachycardia (VT) after myocardial infarction (MI) by the same mechanism with the mutation V3599K of RyR2, which indicated that the inhibition of diastolic Ca2+ leakage occurred by enhancing the binding affinity of calmodulin (CaM) to RyR2. METHODS AND RESULTS: A left anterior descending coronary artery ligation MI model was developed in mice. Wild-type (WT) were divided into four groups: sham-operated mice (WT-Sham), sham-operated mice treated with dantrolene (WT-Sham-DAN), MI mice (WT-MI), and MI mice treated with dantrolene (WT-MI-DAN). Homozygous V3599K RyR2 knock-in (KI) mice were divided into two groups: sham-operated mice (KI-Sham) and MI mice (KI-MI). The mice were followed for 12 weeks. Survival was significantly higher in the WT-MI-DAN (73%) and KI-MI groups (70%) than the WT-MI group (40%). Echocardiography, pathological tissue, and epinephrine-induced VT studies showed that LV remodeling and VT were prevented in the WT-MI-DAN and KI-MI groups compared to the WT-MI group. An increase in diastolic Ca2+ spark frequency and a decrease in the binding affinity of CaM to the RyR2 were observed at 12 weeks after MI in the WT-MI group, although significant improvements in these values were observed in the WT-MI-DAN and KI-MI groups. CONCLUSIONS: Pharmacological or genetic stabilization of RyR2 tetrameric structure improves survival after MI by suppressing LV remodeling and proarrhythmia.


Assuntos
Insuficiência Cardíaca , Infarto do Miocárdio , Taquicardia Ventricular , Camundongos , Animais , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Dantroleno/farmacologia , Remodelação Ventricular , Miócitos Cardíacos/metabolismo , Taquicardia Ventricular/etiologia , Taquicardia Ventricular/genética , Arritmias Cardíacas/metabolismo , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/etiologia , Insuficiência Cardíaca/metabolismo , Calmodulina/metabolismo , Infarto do Miocárdio/complicações , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/metabolismo
2.
Biochem Biophys Res Commun ; 652: 61-67, 2023 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-36812708

RESUMO

In this study, we aimed to analyze the role of the Homocysteine-responsive endoplasmic reticulum-resident ubiquitin-like domain member 1 (Herpud1) gene in the development of cardiomyocyte hypertrophy in association with Calmodulin (CaM) nuclear translocation and cytosolic Ca2+ levels. To observe the mobilization of CaM in cardiomyocytes, we stably expressed eGFP-CaM in rat myocardium-derived H9C2 cells. These cells were then treated with Angiotensin II (Ang II), which stimulates a cardiac hypertrophic response, or dantrolene (DAN), which blocks the release of intracellular Ca2+. To observe intracellular Ca2+ in the presence of eGFP fluorescence, a Rohd-3 Ca2+ sensing dye was used. To examine the effect of suppressing Herpud1 expression, Herpud1 small interfering RNA (siRNA) were transfected into H9C2 cells. To examine whether hypertrophy induced by Ang II could be suppressed by Herpud1 overexpression, a Herpud1-expressing vector was introduced into H9C2 cells. CaM translocation was observed using eGFP fluorescence. Nuclear translocation of Nuclear factor of activated T-cells, cytoplasmic 4 (NFATc4) and nuclear export of Histone deacetylase 4 (HDAC4) were also examined. First, Ang II induced H9C2 hypertrophy with nuclear translocation of CaM and elevation of cytosolic Ca2+, which were inhibited by DAN treatment. We also found that Herpud1 overexpression suppressed Ang II-induced cellular hypertrophy without preventing nuclear translocation of CaM or elevation of cytosolic Ca2+. Additionally, Herpud1 knockdown induced hypertrophy without the nuclear translocation of CaM, which was not inhibited by DAN treatment. Finally, Herpud1 overexpression suppressed Ang II-induced NFATc4 nuclear translocation but did not suppress Ang II-induced CaM nuclear translocation or HDAC4 nuclear export. Ultimately, this study lays the groundwork for elucidating the anti-hypertrophic effects of Herpud1 and the underlying mechanism of pathological hypertrophy.


Assuntos
Calmodulina , Miócitos Cardíacos , Ratos , Animais , Miócitos Cardíacos/metabolismo , Calmodulina/metabolismo , Cardiomegalia/patologia , Células Cultivadas , Linhagem Celular , RNA Interferente Pequeno/metabolismo , Fatores de Transcrição/metabolismo , Angiotensina II/farmacologia
3.
Biochem Biophys Res Commun ; 642: 175-184, 2023 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-36584481

RESUMO

Dantrolene (DAN) directly binds to cardiac ryanodine receptor 2 (RyR2) through Leu601-Cys620 in the N-terminal domain and subsequently inhibits diastolic Ca2+ leakage through RyR2. We previously reported that therapy using RyR2 V3599K mutation, which inhibits diastolic Ca2+ leakage by enhancing calmodulin (CaM) binding ability to RyR2, prevents left ventricular (LV) remodeling in transverse aortic constriction (TAC) heart failure. Here, we examined whether chronic administration of DAN prevents LV remodeling in TAC heart failure via the same mechanism as genetic therapy. A pressure-overloaded hypertrophy mouse model was developed using TAC. Wild-type (WT) mice were divided into three groups: sham-operated mice (Sham group), TAC mice (TAC group), and TAC mice treated with DAN (TAC-DAN group, 20 mg/kg/day, i.p.). They were then followed up for 8 weeks. The survival rate was higher in the TAC-DAN group (83%) than in the TAC group (49%), and serial echocardiography studies and pathological tissue analysis showed that LV remodeling was significantly prevented in the TAC-DAN group compared to the TAC group. An increase in the diastolic Ca2+ spark frequency and a decrease in the binding affinity of CaM to RyR2 were observed at 8 weeks in the TAC group but not in the TAC-DAN group. Stabilization of RyR2 with DAN prevented LV remodeling and improved survival after TAC by enhancing CaM binding to RyR2 and inhibiting RyR2-mediated diastolic Ca2+ leakage.


Assuntos
Estenose da Valva Aórtica , Insuficiência Cardíaca , Camundongos , Animais , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Dantroleno/farmacologia , Dantroleno/uso terapêutico , Remodelação Ventricular/genética , Insuficiência Cardíaca/metabolismo , Sinalização do Cálcio
4.
Int J Mol Sci ; 24(16)2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37628726

RESUMO

Ca2+ leak from cardiomyocyte sarcoplasmic reticulum (SR) via hyperactive resting cardiac ryanodine receptor channels (RyR2) is pro-arrhythmic. An exogenous peptide (DPc10) binding promotes leaky RyR2 in cardiomyocytes and reports on that endogenous state. Conversely, calmodulin (CaM) binding inhibits RyR2 leak and low CaM affinity is diagnostic of leaky RyR2. These observations have led to designing a FRET biosensor for drug discovery targeting RyR2. We used FRET to clarify the molecular mechanism driving the DPc10-CaM interdependence when binding RyR2 in SR vesicles. We used donor-FKBP12.6 (D-FKBP) to resolve RyR2 binding of acceptor-CaM (A-CaM). In low nanomolar Ca2+, DPc10 decreased both FRETmax (under saturating [A-CaM]) and the CaM/RyR2 binding affinity. In micromolar Ca2+, DPc10 decreased FRETmax without affecting CaM/RyR2 binding affinity. This correlates with the analysis of fluorescence-lifetime-detected FRET, indicating that DPc10 lowers occupancy of the RyR2 CaM-binding sites in nanomolar (not micromolar) Ca2+ and lengthens D-FKBP/A-CaM distances independent of [Ca2+]. To observe DPc10/RyR2 binding, we used acceptor-DPc10 (A-DPc10). CaM weakens A-DPc10/RyR2 binding, with this effect being larger in micromolar versus nanomolar Ca2+. Moreover, A-DPc10/RyR2 binding is cooperative in a CaM- and FKBP-dependent manner, suggesting that both endogenous modulators promote concerted structural changes between RyR2 protomers for channel regulation. Aided by the analysis of cryo-EM structures, these insights inform further development of the DPc10-CaM paradigm for therapeutic discovery targeting RyR2.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Canal de Liberação de Cálcio do Receptor de Rianodina , Sítios de Ligação , Sistemas de Liberação de Medicamentos
5.
Biochem Biophys Res Commun ; 623: 51-58, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35872542

RESUMO

Dantrolene is a ryanodine receptor blocker that is used clinically for treatment of malignant hyperthermia. This study was conducted using murine aortic vascular smooth muscle cells (MOVAS) and a mouse arterial injury model to investigate the inhibitory effect of dantrolene on smooth muscle cell proliferation and migration. We investigated whether dantrolene suppressed platelet-derived growth factor (PDGF)-induced vascular smooth muscle cell proliferation and migration in vitro. The effect of dantrolene on smooth muscle phenotype was evaluated using immunostaining. In addition, smooth muscle cell proliferation and phenotype switching were tested by applying dantrolene around blood vessels using a mouse arterial injury model. Dantrolene inhibited PDGF-induced cell proliferation and migration of MOVAS. Dantrolene also inhibited the switch from contractile to synthetic phenotype both in vitro and in vivo. Dantrolene is effective at inhibiting vascular smooth muscle cell proliferation, migration, and neointimal formation following arterial injury in mice.


Assuntos
Músculo Liso Vascular , Lesões do Sistema Vascular , Animais , Movimento Celular , Proliferação de Células , Células Cultivadas , Dantroleno/farmacologia , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C57BL , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Neointima/patologia , Fator de Crescimento Derivado de Plaquetas/metabolismo , Fator de Crescimento Derivado de Plaquetas/farmacologia , Lesões do Sistema Vascular/tratamento farmacológico , Lesões do Sistema Vascular/patologia
6.
Biochem Biophys Res Commun ; 628: 155-162, 2022 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-36099691

RESUMO

BACKGROUND AND AIMS: Increased endoplasmic reticulum (ER) stress is strongly associated with the phenotypic switching of vascular smooth muscle cells (VSMCs) in atherosclerosis. Depletion of the ER Ca2+ content is one of the leading causes of increased ER stress in VSMCs. The ryanodine receptor (RyR) is a major Ca2+ release channel in the sarcoplasmic reticulum membrane. Calmodulin (CaM), which binds to RyR (CaM-RyR), stabilizes the closed state of RyR in the resting state in normal cells. Defective CaM-RyR interactions can cause abnormal Ca2+ leakage through RyR, resulting in decreased Ca2+ content, indicating that defective CaM-RyR interactions may be a cause of increased ER stress. Herein, we used a mouse VSMCs to assess whether CaM-RyR plays a pivotal role in VSMCs phenotypic switching, which is caused by ER stress, and whether dantrolene, which enhances the binding affinity of CaM to RyR, affects VSMCs phenotypic switching. METHODS AND RESULTS: Tunicamycin was used to mimic ER stress in vitro. Tunicamycin-induced ER stress caused CaM to dissociate from the RyR and translocate to the nucleus, which stimulated phenotypic switching through the activation of MEF2 and KLF5. Dantrolene suppressed tunicamycin-induced apoptosis, ER stress (restoring ER Ca2+ content), and phenotypic switching of VSMCs. Suramin, which directly unbinds CaM from RyR, promoted nuclear CaM accumulation with parallel VSMCs phenotypic switching, and dantrolene prevented these effects. CONCLUSIONS: We observed that ER stress causes CaM translocation to the nucleus and drives the phenotypic switching of VSMCs. Thus, restoration of the binding affinity of CaM to RyR may be a therapeutic target for atherosclerosis.


Assuntos
Aterosclerose , Calmodulina , Estresse do Retículo Endoplasmático , Músculo Liso Vascular , Animais , Aterosclerose/metabolismo , Calmodulina/metabolismo , Dantroleno , Estresse do Retículo Endoplasmático/fisiologia , Camundongos , Músculo Liso Vascular/citologia , Músculo Liso Vascular/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Suramina , Tunicamicina/farmacologia
7.
Circ J ; 86(11): 1748-1755, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-35135943

RESUMO

BACKGROUND: Transcatheter aortic valve implantation (TAVI) is increasingly being performed in very elderly patients, although its efficacy and validity remain unclear. This study evaluated real-world TAVI outcomes in Japanese nonagenarians with severe aortic stenosis.Methods and Results: This single-center study retrospectively assessed the early and long-term clinical outcomes of TAVI in nonagenarians (n=35) and in patients aged <90 years (group Y; n=171). There were no in-hospital deaths in either group. The device success rate and early safety were comparable between the 2 groups. The 5-year rates of freedom from cardiac events and deaths were equivalent in both groups. The cumulative survival rate at 5 years was non-significantly lower in nonagenarians (32.6% in nonagenarians vs. 57.5% in patients aged <90 years, P=0.49). There were no differences in the 5-year survival between nonagenarians after TAVI and the sex- and age-matched populations (P=0.18). The Cox regression model revealed that lower hemoglobin levels were associated with all-cause mortality (P=0.02), and age ≥90 years was not associated with all-cause mortality. CONCLUSIONS: The early and long-term clinical outcomes of TAVI for selected Japanese nonagenarians were comparable to those in patients aged <90 years. Nonagenarians who underwent TAVI achieved an acceptable prognosis compared to the sex- and age-matched population; thus, TAVI appears to be effective for treating aortic stenosis in Japanese nonagenarians.


Assuntos
Estenose da Valva Aórtica , Substituição da Valva Aórtica Transcateter , Idoso , Idoso de 80 Anos ou mais , Humanos , Valva Aórtica/cirurgia , Estenose da Valva Aórtica/cirurgia , Hemoglobinas , Japão , Nonagenários , Estudos Retrospectivos , Fatores de Risco , Resultado do Tratamento
8.
Heart Vessels ; 37(3): 363-373, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34417846

RESUMO

A beneficial surrogate marker for evaluating the effect of medical therapy is warranted to avoid deferred lesion revascularization. Similar to coronary artery imaging for monitoring the effects of medical therapy by analyzing plaque regression and stabilization, we hypothesized that evaluation of serial changes in the quantitative flow ratio (QFR) would serve as a surrogate marker of the effects of medical therapy against deferred lesion revascularization. Here, we investigated serial changes in QFR over time after percutaneous coronary intervention in patients who underwent medical therapy as a secondary prevention. Patients with intermediate stenosis in an untreated vessel observed at the baseline (BL) coronary angiography and follow-up (FU) coronary angiography performed 6-18 months after BL angiography were screened in 2 centers. A total of 52 patients were able to analyze both BL and FU QFR. The median QFR was 0.83 (IQR, 0.69, 0.89) at BL and 0.80 (IQR, 0.70, 0.86) at FU. The number of positive ΔQFR and negative ΔQFR were 21 and 31, respectively. The median ΔQFR was 0.05 (IQR, 0.03, 0.09) in positive ΔQFR and - 0.05 (IQR, - 0.07, - 0.03) in negative ΔQFR (p < 0.0001). Univariate and multivariate analyses revealed that LDL-C at FU predicted improvement in the QFR (OR 0.95, 95% confidence interval [0.91, 0.98], P = 0.001). Assessment of serial changes in the QFR may serve as a surrogate marker for the effects of medical therapy in patients with residual intermediate coronary stenosis.


Assuntos
Doença da Artéria Coronariana , Estenose Coronária , Reserva Fracionada de Fluxo Miocárdico , Intervenção Coronária Percutânea , Constrição Patológica , Angiografia Coronária/métodos , Doença da Artéria Coronariana/diagnóstico por imagem , Doença da Artéria Coronariana/cirurgia , Estenose Coronária/diagnóstico por imagem , Estenose Coronária/cirurgia , Vasos Coronários/diagnóstico por imagem , Vasos Coronários/cirurgia , Humanos , Intervenção Coronária Percutânea/efeitos adversos , Valor Preditivo dos Testes
9.
Biochem Biophys Res Commun ; 524(2): 431-438, 2020 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-32007269

RESUMO

AIMS: Ca2+/calmodulin-dependent protein kinase II (CaMKII) has been shown to induce aberrant Ca2+ release from the cardiac ryanodine receptor (RyR2) in various diseased hearts. However, the precise pathogenic mechanism remains to be elucidated. Here, we investigated the effect of dantrolene (DAN): a RyR2 stabilizer on local Ca2+ release, cardiac function, and lethal arrhythmia in CaMKIIδc transgenic (TG) mice. METHODS AND RESULTS: The TG mice showed an increase in left ventricular end-diastolic diameter (LVEDD) and left ventricular end-systolic diameter (LVESD) with a reduction in LV fractional shortening (LVFS). The phosphorylation levels of Ser2814 in RyR2 and Thr287 in CaMKII increased in TG mice. In TG cardiomyocytes, peak cell shortening (CS) decreased, and the frequency of spontaneous Ca2+ transients (sCaTs) increased. Endogenous RyR2-associated calmodulin (CaM) markedly decreased in TG cardiomyocytes. After chronic DAN treatment for 1 month, LVESD (but not LVEDD) decreased with an increase in LVFS. In the chronic DAN-treated cardiomyocytes, CS increased, sCaTs decreased, and the endogenous CaM binding to RyR2 normally restored. The phosphorylation levels of Ser2814 in RyR2 and Thr287 in CaMKII remained elevated even after DAN treatment. Moreover, in TG mice, chronic DAN treatment prevented sustained ventricular tachycardia induced by epinephrine. CONCLUSIONS: Defective association of CaM with RyR2 is most likely to be involved in the pathogenesis of CaMKII-mediated cardiac dysfunction and lethal arrhythmia.


Assuntos
Arritmias Cardíacas/prevenção & controle , Arritmias Cardíacas/fisiopatologia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Coração/fisiopatologia , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Animais , Arritmias Cardíacas/genética , Arritmias Cardíacas/metabolismo , Cálcio/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Células Cultivadas , Dantroleno/uso terapêutico , Técnicas de Introdução de Genes , Coração/efeitos dos fármacos , Camundongos , Camundongos Transgênicos , Relaxantes Musculares Centrais/uso terapêutico , Fosforilação/efeitos dos fármacos , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Regulação para Cima/efeitos dos fármacos
10.
Biochem Biophys Res Commun ; 521(1): 57-63, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31635807

RESUMO

Aberrant Ca2+ release from cardiac ryanodine receptors (RyR2) has been shown to be one of the most important causes of lethal arrhythmia in various types of failing hearts. We previously showed that dantrolene, a specific agent for the treatment of malignant hyperthermia, inhibits Ca2+ leakage from the RyR2 by correcting the defective inter-domain interaction between the N-terminal (1-619 amino acids) and central (2000-2500 amino acids) domains of the RyR2 and allosterically enhancing the binding affinity of calmodulin to the RyR2 in diseased hearts. In this study, we examined whether dantrolene inhibits this Ca2+ leakage, thereby preventing the pharmacologically inducible ventricular tachycardia in ventricular pressure-overloaded failing hearts. Ventricular tachycardia (VT) was easily induced after an injection of epinephrine in mice after 8 weeks of transverse aortic constriction-induced pressure-overload. Pretreatment with dantrolene almost completely inhibited the pharmacologically inducible VT. In the presence of dantrolene, the occurrence of both Ca2+ sparks and spontaneous Ca2+ transients was inhibited, which was associated with enhanced calmodulin binding affinity to the RyR2. These results suggest that dantrolene could be a new potent agent in the treatment of lethal arrhythmia in cases of acquired heart failure.


Assuntos
Dantroleno/farmacologia , Insuficiência Cardíaca/tratamento farmacológico , Relaxantes Musculares Centrais/farmacologia , Substâncias Protetoras/farmacologia , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Taquicardia Ventricular/tratamento farmacológico , Animais , Insuficiência Cardíaca/patologia , Camundongos , Pressão , Taquicardia Ventricular/metabolismo , Taquicardia Ventricular/patologia
11.
Cardiology ; 142(4): 195-202, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31137022

RESUMO

BACKGROUND: Tachycardia worsens cardiac performance in acute decompensated heart failure (ADHF). We investigated whether heart rate (HR) optimization by landiolol, an ultra-short-acting ß1-selective blocker, in combination with milrinone improved cardiac function in patients with ADHF and rapid atrial fibrillation (AF). METHODS AND RESULTS: We enrolled9 ADHF patients (New York Heart Association classification IV; HR, 138 ± 18 bpm; left ventricular [LV] ejection fraction, 28 ± 8%; cardiac index [CI], 2.1 ± 0.3 L/min-1/m-2; pulmonary capillary wedge pressure [PCWP], 24 ± 3 mm Hg), whose HRs could not be reduced using standard treatments, including diuretics, vasodilators, and milrinone. Landiolol (1.5-6.0 µg/kg-1/min-1, intravenous) was added to milrinone treatment to study its effect on hemodynamics. The addition of landiolol (1.5 µg/kg-1/min-1) significantly reduced HR by 11% without changing systolic blood pressure (BP) and resulted in a significant decrease in PCWP and a significant increase in stroke volume index (SVI), suggesting that HR reduction restores incomplete LV relaxation. Administration of more than 3.0 µg/kg-1/min-1 of landiolol decreased BP, CI, and SVI. CONCLUSION: The addition of landiolol at doses of <3.0 µg/kg/min to milrinone improved cardiac function in decompensated chronic heart failure with rapid atrial fibrillation by selectively reducing HR.


Assuntos
Antagonistas Adrenérgicos beta/uso terapêutico , Fibrilação Atrial/tratamento farmacológico , Cardiotônicos/uso terapêutico , Insuficiência Cardíaca/tratamento farmacológico , Milrinona/uso terapêutico , Morfolinas/uso terapêutico , Ureia/análogos & derivados , Idoso , Idoso de 80 Anos ou mais , Relação Dose-Resposta a Droga , Quimioterapia Combinada , Feminino , Hemodinâmica/efeitos dos fármacos , Humanos , Japão , Masculino , Estudos Prospectivos , Taquicardia , Resultado do Tratamento , Ureia/uso terapêutico
12.
J Mol Cell Cardiol ; 125: 87-97, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30359562

RESUMO

In cardiac myocytes Calmodulin (CaM) bound to the ryanodine receptor (RyR2) constitutes a large pool of total myocyte CaM, but the CaM-RyR2 affinity is reduced in pathological conditions. Knock-in mice expressing RyR2 unable to bind CaM also developed hypertrophy and early death. However, it is unknown whether CaM released from this RyR2-bound pool participates in pathological cardiac hypertrophy. We found that angiotensin II (AngII) or phenylephrine (PE) both cause CaM to dissociate from the RyR2 and translocate to the nucleus. To test whether this nuclear CaM accumulation depends on CaM released from RyR2, we enhanced CaM-RyR2 binding affinity (with dantrolene), or caused CaM dissociation from RyR2 (using suramin). Dantrolene dramatically reduced AngII- and PE-induced nuclear CaM accumulation. Conversely, suramin enhanced nuclear CaM accumulation. This is consistent with nuclear CaM accumulation coming largely from the CaM-RyR2 pool. CaM lacks a nuclear localization signal (NLS), but G-protein coupled receptor kinase 5 (GRK5) binds CaM, has a NLS and translocates like CaM in response to AngII or PE. Suramin also promoted GRK5 nuclear import, and caused nuclear export of histone deacetylase 5 (HDAC5). Dantrolene prevented these effects. After 2-8 weeks of pressure overload (TAC) CaM binding to RyR2 was reduced, nuclear CaM and GRK5 were both elevated and there was enhanced nuclear export of HDAC5. Stress (acute AngII or TAC) causes CaM dissociation from RyR2 and translocation to the nucleus with GRK5 with parallel HDAC5 nuclear export. Thus CaM dissociation from RyR2 may be an important step in driving pathological hypertrophic gene transcription.


Assuntos
Calmodulina/metabolismo , Cardiomegalia/metabolismo , Núcleo Celular/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Angiotensina II/farmacologia , Animais , Transporte Biológico/efeitos dos fármacos , Células Cultivadas , Dantroleno/farmacologia , Histona Desacetilases/metabolismo , Camundongos , Sinais de Localização Nuclear/metabolismo , Fenilefrina/farmacologia , Receptores Acoplados a Proteínas G/metabolismo , Suramina/farmacologia
13.
Biochem Biophys Res Commun ; 496(4): 1250-1256, 2018 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-29402414

RESUMO

AIMS: Cardiac Troponin T (TnT) mutation-linked familial hypertrophic cardiomyopathy (FHC) is known to cause sudden cardiac death at a young age. Here, we investigated the role of the Ca2+ release channel of the cardiac sarcoplasmic reticulum (SR), ryanodine receptor (RyR2), in the pathogenic mechanism of lethal arrhythmia in FHC-related TnT-mutated transgenic mice (TG; TnT-delta160E). METHODS AND RESULTS: In TG cardiomyocytes, the Ca2+ spark frequency (SpF) was much higher than that in non-TG cardiomyocytes. These differences were more pronounced in the presence of isoproterenol (ISO; 10 nM). This increase in SpF was largely reversed by a CaMKII inhibitor (KN-93), but not by a protein kinase A inhibitor (H89). CaMKII phosphorylation at Ser2814 in RyR2 was increased significantly in TG. Spontaneous Ca2+ transients (sCaTs) after cessation of a 1-5 Hz pacing, frequently observed in ISO-treated TG cardiomyocytes, were also attenuated by KN-93, but not by H89. The RyR2 stabilizer dantrolene attenuated Ca2+ sparks and sCaTs in ISO-treated TG cardiomyocytes, indicating that the mutation-linked aberrant Ca2+ release is mediated by destabilized RyR2. CONCLUSIONS: In FHC-linked TnT-mutated hearts, RyR2 is susceptible to CaMKII-mediated phosphorylation, presumably because of a mutation-linked increase in diastolic [Ca2+]i, causing aberrant Ca2+ release leading to lethal arrhythmia.


Assuntos
Arritmias Cardíacas/fisiopatologia , Sinalização do Cálcio , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Cálcio/metabolismo , Cardiomiopatia Hipertrófica Familiar/fisiopatologia , Miócitos Cardíacos/metabolismo , Troponina T/metabolismo , Animais , Arritmias Cardíacas/etiologia , Cardiomiopatia Hipertrófica Familiar/complicações , Células Cultivadas , Camundongos , Camundongos Transgênicos , Fosforilação , Retículo Sarcoplasmático/metabolismo
14.
Circ J ; 82(7): 1943-1950, 2018 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-29760325

RESUMO

BACKGROUND: The clinical robustness of contrast-videodensitometric (VD) assessment of aortic regurgitation (AR) after transcatheter aortic valve implantation (TAVI) has been demonstrated. Correct acquisition of aortic root angiography for VD assessment, however, is hampered by the opacified descending aorta and by individual anatomic peculiarities. The aim of this study was to use preprocedural multi-slice computed tomography (MSCT) to optimize the angiographic projection in order to improve the feasibility of VD assessment.Methods and Results:In 92 consecutive patients, post-TAVI AR (i.e., left ventricular outflow tract [LVOT] AR) was assessed on aortic root angiograms using VD software. The patients were divided into 2 groups: The first group of 54 patients was investigated prior to the introduction of the standardized acquisition protocol; the second group of 38 consecutive patients after implementation of the standardized acquisition protocol, involving MSCT planning of the optimal angiographic projection. Optimal projection planning has dramatically improved the feasibility of VD assessment from 57.4% prior to the standardized acquisition protocol, to 100% after the protocol was implemented. In 69 analyzable aortograms (69/92; 75%), LVOT-AR ranged from 3% to 28% with a median of 12%. Inter-observer agreement was high (mean difference±SD, 1±2%), and the 2 observers' measurements were highly correlated (r=0.94, P<0.0001). CONCLUSIONS: Introduction of computed tomography-guided angiographic image acquisition has significantly improved the analyzability of the angiographic VD assessment of post-TAVI AR.


Assuntos
Insuficiência da Valva Aórtica/diagnóstico por imagem , Aortografia/métodos , Tomografia Computadorizada por Raios X/métodos , Substituição da Valva Aórtica Transcateter/métodos , Insuficiência da Valva Aórtica/diagnóstico , Humanos , Variações Dependentes do Observador , Raios X
15.
Circ J ; 82(9): 2317-2325, 2018 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-29973472

RESUMO

BACKGROUND: We investigated the relationship between intraprocedural angiographic and echocardiographic AR severity after TAVI, and the clinical robustness of angiographic assessment. Methods and Results: In 74 consecutive patients, the echocardiographic circumferential extent (CE) of the paravalvular regurgitant jet was retrospectively measured and graded based on the VARC-2 cut-points; and angiographic post-TAVI AR was retrospectively quantified using contrast videodensitometry (VD) software that calculates the ratio of the contrast time-density integral in the LV outflow tract to that in the ascending aorta (LVOT-AR). Seventy-four echocardiograms immediately after TAVI were analyzable, while 51 aortograms were analyzable for VD. These 51 echocardiograms and VD were evaluated. Median LVOT-AR across the echocardiographic AR grades was as follows: none-trace, 0.07 (IQR, 0.05-0.11); mild, 0.12 (IQR, 0.09-0.15); and moderate, 0.17 (IQR, 0.15-0.22; P<0.05 for none-trace vs. mild, and mild vs. moderate). LVOT-AR strongly correlated with %CE (r=0.72, P<0.0001). At 1 year, the rate of the composite end-point of all-cause death or HF re-hospitalization was significantly higher in >mild AR patients compared with no-mild AR on intra-procedural echocardiography (41.5% vs. 12.4%, P=0.03) as well as in patients with LVOT-AR >0.17 compared with LVOT-AR ≤0.17 (59.5% vs. 16.6%, P=0.03). CONCLUSIONS: VD (LVOT-AR) has good intra-procedural inter-technique consistency and clinical robustness. Greater than mild post-TAVI AR, but not mild post-TAVI AR, is associated with late mortality.


Assuntos
Insuficiência da Valva Aórtica/diagnóstico por imagem , Aortografia/métodos , Ecocardiografia Transesofagiana/métodos , Substituição da Valva Aórtica Transcateter/efeitos adversos , Idoso de 80 Anos ou mais , Insuficiência da Valva Aórtica/mortalidade , Feminino , Seguimentos , Humanos , Masculino , Readmissão do Paciente , Prognóstico , Curva ROC , Reprodutibilidade dos Testes , Estudos Retrospectivos
16.
J Mol Cell Cardiol ; 98: 62-72, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27318036

RESUMO

Diastolic calcium (Ca) leak via cardiac ryanodine receptors (RyR2) can cause arrhythmias and heart failure (HF). Ca/calmodulin (CaM)-dependent kinase II (CaMKII) is upregulated and more active in HF, promoting RyR2-mediated Ca leak by RyR2-Ser2814 phosphorylation. Here, we tested a mechanistic hypothesis that RyR2 phosphorylation by CaMKII increases Ca leak by promoting a pathological RyR2 conformation with reduced CaM affinity. Acute CaMKII activation in wild-type RyR2, and phosphomimetic RyR2-S2814D (vs. non-phosphorylatable RyR2-S2814A) knock-in mouse myocytes increased SR Ca leak, reduced CaM-RyR2 affinity, and caused a pathological shift in RyR2 conformation (detected via increased access of the RyR2 structural peptide DPc10). This same trio of effects was seen in myocytes from rabbits with pressure/volume-overload induced HF. Excess CaM quieted leak and restored control conformation, consistent with negative allosteric coupling between CaM affinity and DPc10 accessible conformation. Dantrolene (DAN) also restored CaM affinity, reduced DPc10 access, and suppressed RyR2-mediated Ca leak and ventricular tachycardia in RyR2-S2814D mice. We propose that a common pathological RyR2 conformational state (low CaM affinity, high DPc10 access, and elevated leak) may be caused by CaMKII-dependent phosphorylation, oxidation, and HF. Moreover, DAN (or excess CaM) can shift this pathological gating state back to the normal physiological conformation, a potentially important therapeutic approach.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Conformação Proteica , Canal de Liberação de Cálcio do Receptor de Rianodina/química , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Animais , Cálcio/metabolismo , Sinalização do Cálcio , Calmodulina/metabolismo , Dantroleno/farmacologia , Modelos Animais de Doenças , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/patologia , Ativação do Canal Iônico , Camundongos , Miócitos Cardíacos/metabolismo , Permeabilidade , Fosforilação , Ligação Proteica , Conformação Proteica/efeitos dos fármacos , Coelhos , Retículo Sarcoplasmático/metabolismo , Taquicardia Ventricular/tratamento farmacológico , Taquicardia Ventricular/etiologia , Taquicardia Ventricular/metabolismo , Taquicardia Ventricular/fisiopatologia , Proteínas de Ligação a Tacrolimo/metabolismo
17.
Circ Res ; 114(2): 295-306, 2014 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-24186966

RESUMO

RATIONALE: Calmodulin (CaM) associates with cardiac ryanodine receptor type-2 (RyR2) as an important regulator. Defective CaM-RyR2 interaction may occur in heart failure, cardiac hypertrophy, and catecholaminergic polymorphic ventricular tachycardia. However, the in situ binding properties for CaM-RyR2 are unknown. OBJECTIVE: We sought to measure the in situ binding affinity and kinetics for CaM-RyR2 in normal and heart failure ventricular myocytes, estimate the percentage of Z-line-localized CaM that is RyR2-bound, and test cellular function of defective CaM-RyR2 interaction. METHODS AND RESULTS: Using fluorescence resonance energy transfer in permeabilized myocytes, we specifically resolved RyR2-bound CaM from other potential binding targets and measured CaM-RyR2 binding affinity in situ (Kd=10-20 nmol/L). Using RyR2(ADA/+) knock-in mice, in which half of the CaM-RyR2 binding is suppressed, we estimated that >90% of Z-line CaM is RyR2-bound. Functional tests indicated a higher propensity for Ca2+ wave production and stress-induced ventricular arrhythmia in RyR2(ADA/+) mice. In a post-myocardial infarction rat heart failure model, we detected a decrease in the CaM-RyR2 binding affinity (Kd≈51 nmol/L; ≈3-fold increase) and unaltered RyR2 affinity for the FK506-binding protein FKBP12.6 (Kd~0.8 nmol/L). CONCLUSIONS: CaM binds to RyR2 with high affinity in cardiac myocytes. Physiologically, CaM is bound to >70% of RyR2 monomers and inhibits sarcoplasmic reticulum Ca2+ release. RyR2 is the major binding site for CaM along the Z-line in cardiomyocytes, and dissociating CaM from RyR2 can cause severe ventricular arrhythmia. In heart failure, RyR2 shows decreased CaM affinity, but unaltered FKBP 12.6 affinity.


Assuntos
Arritmias Cardíacas/etiologia , Calmodulina/metabolismo , Insuficiência Cardíaca/complicações , Miócitos Cardíacos/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Animais , Arritmias Cardíacas/genética , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/fisiopatologia , Sinalização do Cálcio , Modelos Animais de Doenças , Transferência Ressonante de Energia de Fluorescência , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/fisiopatologia , Cinética , Camundongos , Camundongos Transgênicos , Ligação Proteica , Mapeamento de Interação de Proteínas , Ratos , Ratos Sprague-Dawley , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Retículo Sarcoplasmático/metabolismo , Proteínas de Ligação a Tacrolimo/metabolismo
18.
J Mol Cell Cardiol ; 85: 240-8, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26092277

RESUMO

Oxidative stress may contribute to cardiac ryanodine receptor (RyR2) dysfunction in heart failure (HF) and arrhythmias. Altered RyR2 domain-domain interaction (domain unzipping) and calmodulin (CaM) binding affinity are allosterically coupled indices of RyR2 conformation. In HF RyR2 exhibits reduced CaM binding, increased domain unzipping and greater SR Ca leak, and dantrolene can reverse these changes. However, effects of oxidative stress on RyR2 conformation and leak in myocytes are poorly understood. We used fluorescent CaM, FKBP12.6, and domain-peptide biosensor (F-DPc10) to measure, directly in cardiac myocytes, (1) RyR2 activation by hydrogen peroxide (H2O2)-induced oxidation, (2) RyR2 conformation change caused by oxidation, (3) CaM-RyR2 and FK506-binding protein (FKBP12.6)-RyR2 interaction upon oxidation, and (4) whether dantrolene affects 1-3. H2O2 was used to mimic oxidative stress. H2O2 significantly increased the frequency of Ca(2+) sparks and spontaneous Ca(2+) waves, and dantrolene almost completely blocked these effects. H2O2 pretreatment significantly reduced CaM-RyR2 binding, but had no effect on FKBP12.6-RyR2 binding. Dantrolene restored CaM-RyR2 binding but had no effect on intracellular and RyR2 oxidation levels. H2O2 also accelerated F-DPc10-RyR2 association while dantrolene slowed it. Thus, H2O2 causes conformational changes (sensed by CaM and DPc10 binding) associated with Ca leak, and dantrolene reverses these RyR2 effects. In conclusion, in cardiomyocytes, H2O2 treatment markedly reduces the CaM-RyR2 affinity, has no effect on FKBP12.6-RyR2 affinity, and causes domain unzipping. Dantrolene can correct domain unzipping, restore CaM-RyR2 affinity, and quiet pathological RyR2 channel gating. F-DPc10 and CaM are useful biosensors of a pathophysiological RyR2 state.


Assuntos
Calmodulina/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Animais , Cálcio/metabolismo , Sinalização do Cálcio , Células Cultivadas , Peróxido de Hidrogênio/farmacologia , Cinética , Miócitos Cardíacos/metabolismo , Oxirredução , Estresse Oxidativo , Ligação Proteica , Conformação Proteica , Ratos , Proteínas de Ligação a Tacrolimo/metabolismo
19.
Circ Res ; 112(3): 487-97, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23233753

RESUMO

RATIONALE: One hypothesis for elevated Ca(2+) leak through cardiac ryanodine receptors (ryanodine receptor 2 [RyR2]) in heart failure is interdomain unzipping that can enhance aberrant channel activation. A peptide (domain peptide corresponding to RyR2 residues 2460-2495 [DPc10]) corresponding to RyR2 central domain residues 2460-2495 recapitulates this arrhythmogenic RyR2 leakiness by unzipping N-terminal and central domains. Calmodulin (CaM) and FK506-binding protein (FKBP12.6) bind to RyR2 and stabilize the closed channel. Little is known about DPc10 binding to the RyR2 and how that may interact with binding (and effects) of CaM and FKBP12.6 to RyR2. OBJECTIVE: To measure, directly in cardiac myocytes, the kinetics and binding affinity of DPc10 to RyR2 and how that affects RyR2 interaction with FKBP12.6 and CaM. METHODS AND RESULTS: We used permeabilized rat ventricular myocytes and fluorescently labeled DPc10, FKBP12.6, and CaM. DPc10 access to its binding site is extremely slow in resting RyR2 but is accelerated by promoting RyR opening or unzipping (by unlabeled DPc10). RyR2-bound CaM (but not FKBP12.6) drastically slowed DPc10 binding. Conversely, DPc10 binding significantly reduced CaM (but not FKBP12.6) binding to the RyR2. Fluorescence resonance energy transfer measurements indicate that DPc10-binding and CaM-binding sites are separate and allow triangulation of the structural DPc10 binding locus on RyR2 vs FKBP12.6-binding and CaM-binding sites. CONCLUSIONS: DPc10-RyR2 binding is sterically limited by the resting zipped RyR2 state. CaM binding to RyR2 stabilizes this zipped state, whereas RyR2 activation or prebound DPc10 enhances DPc10 access. DPc10-binding and CaM-binding sites are distinct but are allosterically interacting RyR2 sites. Neither DPc10 nor FKBP12.6 influences RyR2 binding of the other.


Assuntos
Calmodulina/metabolismo , Ativação do Canal Iônico , Miócitos Cardíacos/metabolismo , Fragmentos de Peptídeos/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Animais , Ligação Competitiva , Calmodulina/química , Transferência Ressonante de Energia de Fluorescência , Insuficiência Cardíaca/metabolismo , Cinética , Microscopia Confocal , Modelos Moleculares , Fragmentos de Peptídeos/química , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Mapeamento de Interação de Proteínas , Ratos , Canal de Liberação de Cálcio do Receptor de Rianodina/química , Proteínas de Ligação a Tacrolimo/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA