Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Chem Phys ; 160(14)2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38587226

RESUMO

This study explored the interplay between the ligand-surface chemistry of colloidal CsPbBr3 nanowires (NWs) and their optical properties. The ligand equilibrium was probed using nuclear magnetic resonance spectroscopy, and by perturbing the equilibrium via dilution, the gradual removal of ligands from the CsPbBr3 surface was observed. This removal was correlated with an increase in the surface defect density, as suggested by a broadening of the photoluminescence (PL) spectrum, a decrease in the PL quantum yield (PLQY), and quenching of the PL decay. These results highlight similar surface binding between the traditional CsPbBr3 quantum dots and our NWs, thereby expanding the scope of well-established ligand chemistry to a relatively unexplored nanocrystal morphology. By controlling the dilution factor, it was revealed that CsPbBr3 NWs achieve a PLQY of 72% ± 2% and a relatively long average PL lifetime of 400 ± 10 ns, without relying on additional surface passivation techniques, such as ligand exchange.

2.
Nano Lett ; 23(24): 11469-11476, 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38060980

RESUMO

Energy funneling is a phenomenon that has been exploited in optoelectronic devices based on low-dimensional materials to improve their performance. Here, we introduce a new class of two-dimensional semiconductor, characterized by multiple regions of varying thickness in a single confined nanostructure with homogeneous composition. This "noninteger 2D semiconductor" was prepared via the structural transformation of two-octahedron-layer-thick (n = 2) 2D cesium lead bromide perovskite nanosheets; it consisted of a central n = 2 region surrounded by edge-lying n = 3 regions, as imaged by electron microscopy. Thicker noninteger 2D CsPbBr3 nanostructures were obtained as well. These noninteger 2D perovskites formed a laterally coupled quantum well band alignment with virtually no strain at the interface and no dielectric barrier, across which unprecedented intramaterial funneling of the photoexcitation energy was observed from the thin to the thick regions using time-resolved absorption and photoluminescence spectroscopy.

3.
J Am Chem Soc ; 144(27): 12450-12458, 2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35771005

RESUMO

The structural diversity and tunable optoelectronic properties of halide perovskites originate from the rich chemistry of the metal halide ionic octahedron [MX6]n- (M = Pb2+, Sb3+, Te4+, Sn4+, Pt4+, etc.; X = Cl-, Br-, and I-). The properties of the extended perovskite solids are dictated by the assembly, connectivity, and interaction of these octahedra within the lattice environment. Hence, the ability to manipulate and control the assembly of the octahedral building blocks is paramount for constructing new perovskite materials. Here, we propose a systematic supramolecular strategy for the assembly of [MX6]n- octahedra into a solid extended network. Interaction of alkali metal-bound crown ethers with the [M(IV)X6]2- octahedron resulted in a structurally and optoelectronically tunable "dumbbell" structural unit in solution. Single crystals with diverse packing geometries and symmetries will form as the solid assembly of this new supramolecular building block. This supramolecular assembly route introduces a new general strategy for designing halide perovskite structures with potentially new optoelectronic properties.

4.
ACS Appl Mater Interfaces ; 12(35): 39293-39303, 2020 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-32805935

RESUMO

The applications of triplet-triplet annihilation-based photon upconversion (TTA-UC) in solar devices have been limited by the challenges in designing a TTA-UC system that is efficient under aerobic conditions. Efficient TTA-UC under aerobic conditions is typically accomplished by using soft matter or solid-state media, which succeed at protecting the triplet excited states of upconverters (sensitizer and annihilator) from quenching by molecular oxygen but fail at preserving their mobility, thus limiting the TTA-UC efficiency (ΦUC). We showcase a protein/lipid hydrogel that succeeded in doing both of the above due to its unique multiphasic design, with a high ΦUC of 19.0 ± 0.7% using a palladium octaethylporphyrin sensitizer. This hydrogel was made via an industrially compatible method using low-cost and eco-friendly materials: bovine serum albumin (BSA), sodium dodecyl sulfate (SDS), and water. A dense BSA network provided oxygen protection while the encapsulation of upconverters within a micellar SDS environment preserved upconverter mobility, ensuring near-unity triplet energy transfer efficiency. In addition to heavy atom-containing sensitizers, several completely organic, spin-orbit charge-transfer intersystem crossing (SOCT-ISC) Bodipy-based sensitizers were also studied; one of which achieved a ΦUC of 3.5 ± 0.2%, the only reported SOCT-ISC-sensitized ΦUC in soft matter to date. These high efficiencies showed that our multiphasic design was an excellent platform for air-tolerant TTA-UC and that it can be easily adapted to a variety of upconverters.


Assuntos
Hidrogéis/química , Micelas , Soroalbumina Bovina/química , Compostos de Boro/química , Transferência de Energia , Teoria Quântica , Dodecilsulfato de Sódio/química , Temperatura , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA