Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
J Cell Biochem ; 121(4): 2927-2937, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31692073

RESUMO

Bone resorption and organelle homeostasis in osteoclasts require specialized intracellular trafficking. Sorting nexin 10 (Snx10) is a member of the sorting nexin family of proteins that plays crucial roles in cargo sorting in the endosomal pathway by its binding to phosphoinositide(3)phosphate (PI3P) localized in early endosomes. We and others have shown previously that the gene encoding sorting Snx10 is required for osteoclast morphogenesis and function, as osteoclasts from humans and mice lacking functional Snx10 are dysfunctional. To better understand the role and mechanisms by which Snx10 regulates vesicular transport, the aim of the present work was to study PIKfyve, another PI3P-binding protein, which phosphorylates PI3P to PI(3,5)P2. PI(3,5)P2 is known to be required for endosome/lysosome maturation, and the inhibition of PIKfyve causes endosome enlargement. Overexpression of Snx10 also induces accumulation of early endosomes suggesting that both Snx10 and PIKfyve are required for normal endosome/lysosome transition. Apilimod is a small molecule with specific, nanomolar inhibitory activity on PIKfyve but only in the presence of key osteoclast factors CLCN7, OSTM1, and Snx10. This observation suggests that apilimod's inhibitory effects are mediated by endosome/lysosome disruption. Here we show that both Snx10 and PIKfyve colocalize to early endosomes in osteoclasts and coimmunoprecipitate in vesicle fractions. Treatment with 10 nM apilimod or genetic deletion of PIKfyve in cells resulted in the accumulation of early endosomes, and in the inhibition of osteoclast differentiation, lysosome formation, and secretion of TRAP from differentiated osteoclasts. Snx10 and PIKfyve also colocalized in gastric zymogenic cells, another cell type impacted by Snx10 mutations. Apilimod-specific inhibition of PIKfyve required Snx10 expression, as it did not inhibit lysosome biogenesis in Snx10-deficient osteoclasts. These findings suggest that Snx10 and PIKfyve are involved in the regulation of endosome/lysosome homeostasis via the synthesis of PI(3,5)P2 and may point to a new strategy to prevent bone loss.


Assuntos
Lisossomos/metabolismo , Osteoclastos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Nexinas de Classificação/metabolismo , Animais , Transporte Biológico , Reabsorção Óssea/metabolismo , Citoplasma/metabolismo , Endossomos/metabolismo , Regulação da Expressão Gênica , Hidrazonas/farmacologia , Camundongos , Morfolinas/farmacologia , Fosforilação , Pirimidinas/farmacologia , Células RAW 264.7
2.
PLoS Genet ; 11(3): e1005057, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25811986

RESUMO

Mutations in sorting nexin 10 (Snx10) have recently been found to account for roughly 4% of all human malignant osteopetrosis, some of them fatal. To study the disease pathogenesis, we investigated the expression of Snx10 and created mouse models in which Snx10 was knocked down globally or knocked out in osteoclasts. Endocytosis is severely defective in Snx10-deficient osteoclasts, as is extracellular acidification, ruffled border formation, and bone resorption. We also discovered that Snx10 is highly expressed in stomach epithelium, with mutations leading to high stomach pH and low calcium solubilization. Global Snx10-deficiency in mice results in a combined phenotype: osteopetrosis (due to osteoclast defect) and rickets (due to high stomach pH and low calcium availability, resulting in impaired bone mineralization). Osteopetrorickets, the paradoxical association of insufficient mineralization in the context of a positive total body calcium balance, is thought to occur due to the inability of the osteoclasts to maintain normal calcium-phosphorus homeostasis. However, osteoclast-specific Snx10 knockout had no effect on calcium balance, and therefore led to severe osteopetrosis without rickets. Moreover, supplementation with calcium gluconate rescued mice from the rachitic phenotype and dramatically extended life span in global Snx10-deficient mice, suggesting that this may be a life-saving component of the clinical approach to Snx10-dependent human osteopetrosis that has previously gone unrecognized. We conclude that tissue-specific effects of Snx10 mutation need to be considered in clinical approaches to this disease entity. Reliance solely on hematopoietic stem cell transplantation can leave hypocalcemia uncorrected with sometimes fatal consequences. These studies established an essential role for Snx10 in bone homeostasis and underscore the importance of gastric acidification in calcium uptake.


Assuntos
Densidade Óssea/genética , Ácido Gástrico/metabolismo , Osteoclastos/metabolismo , Osteopetrose/genética , Nexinas de Classificação/genética , Sequência de Aminoácidos , Animais , Cálcio/administração & dosagem , Cálcio/metabolismo , Gluconato de Cálcio/administração & dosagem , Endocitose/genética , Técnicas de Silenciamento de Genes , Homeostase , Humanos , Camundongos , Mutação , Osteoclastos/efeitos dos fármacos , Osteoclastos/patologia , Osteopetrose/metabolismo , Osteopetrose/patologia , Nexinas de Classificação/metabolismo , Deficiência de Vitamina D/genética , Deficiência de Vitamina D/metabolismo , Deficiência de Vitamina D/patologia
3.
Connect Tissue Res ; 57(3): 161-74, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26818783

RESUMO

Three named cell types degrade and remove skeletal tissues during growth, repair, or disease: osteoclasts, chondroclasts, and septoclasts. A fourth type, unnamed and less understood, removes nonmineralized cartilage during development of secondary ossification centers. "Osteoclasts," best known and studied, are polykaryons formed by fusion of monocyte precursors under the influence of colony stimulating factor 1 (CSF)-1 (M-CSF) and RANKL. They resorb bone during growth, remodeling, repair, and disease. "Chondroclasts," originally described as highly similar in cytological detail to osteoclasts, reside on and degrade mineralized cartilage. They may be identical to osteoclasts since to date there are no distinguishing markers for them. Because osteoclasts also consume cartilage cores along with bone during growth, the term "chondroclast" might best be reserved for cells attached only to cartilage. "Septoclasts" are less studied and appreciated. They are mononuclear perivascular cells rich in cathepsin B. They extend a cytoplasmic projection with a ruffled membrane and degrade the last transverse septum of hypertrophic cartilage in the growth plate, permitting capillaries to bud into it. To do this, antiangiogenic signals in cartilage must give way to vascular trophic factors, mainly vascular endothelial growth factor (VEGF). The final cell type excavates cartilage canals for vascular invasion of articular cartilage during development of secondary ossification centers. The "clasts" are considered in the context of fracture repair and diseases such as arthritis and tumor metastasis. Many observations support an essential role for hypertrophic chondrocytes in recruiting septoclasts and osteoclasts/chondroclasts by supplying VEGF and RANKL. The intimate relationship between blood vessels and skeletal turnover and repair is also examined.


Assuntos
Desenvolvimento Ósseo , Condrócitos/patologia , Doença , Neovascularização Patológica/patologia , Osteoclastos/patologia , Cicatrização , Animais , Humanos
4.
J Exp Med ; 202(5): 589-95, 2005 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-16147974

RESUMO

Osteoclasts are derived from myeloid lineage cells, and their differentiation is supported by various osteotropic factors, including the tumor necrosis factor (TNF) family member TNF-related activation-induced cytokine (TRANCE). Genetic deletion of TRANCE or its receptor, receptor activator of nuclear factor kappaB (RANK), results in severely osteopetrotic mice with no osteoclasts in their bones. TNF receptor-associated factor (TRAF) 6 is a key signaling adaptor for RANK, and its deficiency leads to similar osteopetrosis. Hence, the current paradigm holds that TRANCE-RANK interaction and subsequent signaling via TRAF6 are essential for the generation of functional osteoclasts. Surprisingly, we show that hematopoietic precursors from TRANCE-, RANK-, or TRAF6-null mice can become osteoclasts in vitro when they are stimulated with TNF-alpha in the presence of cofactors such as TGF-beta. We provide direct evidence against the current paradigm that the TRANCE-RANK-TRAF6 pathway is essential for osteoclast differentiation and suggest the potential existence of alternative routes for osteoclast differentiation.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Células-Tronco Hematopoéticas/efeitos dos fármacos , Osteoclastos/citologia , Osteoclastos/metabolismo , Transdução de Sinais/fisiologia , Fator de Necrose Tumoral alfa/farmacologia , Animais , Proteínas de Transporte/genética , Primers do DNA , Deleção de Genes , Técnicas Histológicas , Linfotoxina-alfa/farmacologia , Masculino , Glicoproteínas de Membrana/deficiência , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ligante RANK , Receptor Ativador de Fator Nuclear kappa-B , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator 6 Associado a Receptor de TNF/deficiência , Fator 6 Associado a Receptor de TNF/genética
5.
J Clin Invest ; 117(4): 919-30, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17404618

RESUMO

This study illustrates that Plekhm1 is an essential protein for bone resorption, as loss-of-function mutations were found to underlie the osteopetrotic phenotype of the incisors absent rat as well as an intermediate type of human osteopetrosis. Electron and confocal microscopic analysis demonstrated that monocytes from a patient homozygous for the mutation differentiated into osteoclasts normally, but when cultured on dentine discs, the osteoclasts failed to form ruffled borders and showed little evidence of bone resorption. The presence of both RUN and pleckstrin homology domains suggests that Plekhm1 may be linked to small GTPase signaling. We found that Plekhm1 colocalized with Rab7 to late endosomal/lysosomal vesicles in HEK293 and osteoclast-like cells, an effect that was dependent on the prenylation of Rab7. In conclusion, we believe PLEKHM1 to be a novel gene implicated in the development of osteopetrosis, with a putative critical function in vesicular transport in the osteoclast.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Cromossomos Humanos Par 10 , Glicoproteínas de Membrana/genética , Osteopetrose/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/genética , Animais , Proteínas Relacionadas à Autofagia , Mapeamento Cromossômico , Feminino , Regulação da Expressão Gênica , Humanos , Rim/fisiologia , Rim/fisiopatologia , Masculino , Glicoproteínas de Membrana/metabolismo , Monócitos/fisiologia , Mutação , Especificidade de Órgãos , Linhagem , Ratos , Proteínas rab de Ligação ao GTP/metabolismo , proteínas de unión al GTP Rab7
6.
Am J Pathol ; 175(6): 2668-75, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19893052

RESUMO

The septoclast is a specialized, cathepsin B-rich, perivascular cell type that accompanies invading capillaries on the metaphyseal side of the growth plate during endochondral bone growth. The putative role of septoclasts is to break down the terminal transverse septum of growth plate cartilage and permit capillaries to bud into the lower hypertrophic zone. This process fails in osteoclast-deficient, osteopetrotic animal models, resulting in a progressive growth plate dysplasia. The toothless rat is severely osteopetrotic because of a frameshift mutation in the colony-stimulating factor-1 (CSF-1) gene (Csf1(tl)). Whereas CSF-1 injections quickly restore endosteal osteoclast populations, they do not improve the chondrodysplasia. We therefore investigated septoclast populations in Csf1(tl)/Csf1(tl) rats and wild-type littermates, with and without CSF-1 treatment, at 2 weeks, before the dysplasia is pronounced, and at 4 weeks, by which time it is severe. Tibial sections were immunolabeled for cathepsin B and septoclasts were counted. Csf1(tl)/Csf1(tl) mutants had significant reductions in septoclasts at both times, although they were more pronounced at 4 weeks. CSF-1 injections increased counts in wild-type and mutant animals at both times, restoring mutants to normal levels at 2 weeks. In all of the mutants, septoclasts seemed misoriented and had abnormal ultrastructure. We conclude that CSF-1 promotes angiogenesis at the chondroosseous junction, but that, in Csf1(tl)/Csf1(tl) rats, septoclasts are unable to direct their degradative activity appropriately, implying a capillary guidance role for locally supplied CSF-1.


Assuntos
Desenvolvimento Ósseo/fisiologia , Condrócitos/patologia , Lâmina de Crescimento/patologia , Fator Estimulador de Colônias de Macrófagos/deficiência , Neovascularização Fisiológica/fisiologia , Osteopetrose/metabolismo , Animais , Doenças do Desenvolvimento Ósseo/tratamento farmacológico , Doenças do Desenvolvimento Ósseo/genética , Doenças do Desenvolvimento Ósseo/metabolismo , Cartilagem/irrigação sanguínea , Cartilagem/citologia , Lâmina de Crescimento/efeitos dos fármacos , Lâmina de Crescimento/metabolismo , Imuno-Histoquímica , Fator Estimulador de Colônias de Macrófagos/genética , Fator Estimulador de Colônias de Macrófagos/farmacologia , Osteopetrose/genética , Ratos , Ratos Mutantes
7.
J Cell Physiol ; 215(2): 497-505, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18064667

RESUMO

Microarray and real-time RT-PCR were used to examine expression changes in primary bone marrow cells and RAW 264.7 cells in response to RANKL. In silico sequence analysis was performed on a novel gene which we designate OC-STAMP. Specific siRNA and antibodies were used to inhibit OC-STAMP RNA and protein, respectively, and tartrate-resistant acid phosphatase (TRAP)+ multinucleated osteoclasts were counted. Antibodies were used to probe bone tissues and western blots of RAW cell extracts +/- RANKL. cDNA overexpression constructs were transfected into RAW cells and the effect on RANKL-induced differentiation was studied. OC-STAMP was very strongly up-regulated during osteoclast differentiation. Northern blots and sequence analysis revealed two transcripts of 2 and 3.7 kb differing only in 3'UTR length, consistent with predictions from genome sequence. The mRNA encodes a 498 amino acid, multipass transmembrane protein that is highly conserved in mammals. It has little overall homology to other proteins. The carboxy-terminal 193 amino acids, however, are significantly similar to the DC-STAMP family consensus sequence. DC-STAMP is a transmembrane protein required for osteoclast precursor fusion. Knockdown of OC-STAMP mRNA by siRNA and protein inhibition by antibodies significantly suppressed the formation of TRAP+, multinucleated cells in differentiating osteoclast cultures, with many TRAP+ mononuclear cells present. Conversely, overexpression of OC-STAMP increased osteoclastic differentiation of RAW 264.7 cells. We conclude that OC-STAMP is a previously unknown, RANKL-induced, multipass transmembrane protein that promotes the formation of multinucleated osteoclasts.


Assuntos
Diferenciação Celular/fisiologia , Proteínas de Membrana/fisiologia , Osteoclastos/citologia , Osteoclastos/metabolismo , Ligante RANK/farmacologia , Fosfatase Ácida/metabolismo , Sequência de Aminoácidos , Animais , Anticorpos/farmacologia , Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Osso e Ossos/metabolismo , Diferenciação Celular/efeitos dos fármacos , Núcleo Celular/ultraestrutura , Células Cultivadas , Imuno-Histoquímica , Isoenzimas/metabolismo , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Análise em Microsséries , Dados de Sequência Molecular , Osteoclastos/efeitos dos fármacos , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/farmacologia , Ratos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência , Fosfatase Ácida Resistente a Tartarato , Transfecção , Regulação para Cima
8.
J Cell Physiol ; 214(1): 56-64, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17541940

RESUMO

Bone morphogenetic proteins (BMPs) play pivotal roles in bone and cartilage growth and repair. Through phenotypes of short-ear (se) mice, which have BMP-5 mutations, a role for BMP-5 in some specific aspects of skeletogenesis and cartilage growth is known. This report examines BMP-5 expression in the growth plate and in differentiating cultures of primary chondrocytes, and the effects of addition of BMP-5 or its inhibition by anti-BMP-5 antibody in chondrocyte cultures. By laser capture microdissection and immunohistochemistry, we found that BMP-5 is expressed in proliferating zone (PZ) chondrocytes and that the expression increases sharply with hypertrophic differentiation. A similar pattern was observed in differentiating cultures of primary chondrocytes, with BMP-5 expression increasing as cells differentiated, in contrast to other BMPs. BMP-5 added to cultures increased cell proliferation early in the culture period and also stimulated cartilage matrix synthesis. Also, BMP-5 addition to the cultures activated phosphorylation of Smad 1/5/8 and p38 MAP kinase and caused increased nuclear accumulation of phospho-Smads. Anti-BMP-5 antibody inhibited the endogenous BMP-5, reducing cell proliferation and phospho-Smad nuclear accumulation. Together, the results demonstrate that BMP-5 is normally an important regulator of chondrocyte proliferation and differentiation. Whether other BMPs may compensate in BMP-5 loss-of-function mutations is discussed.


Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Diferenciação Celular/fisiologia , Proliferação de Células , Condrócitos/metabolismo , Matriz Extracelular/metabolismo , Animais , Proteína Morfogenética Óssea 5 , Calcificação Fisiológica/fisiologia , Cartilagem Articular/citologia , Cartilagem Articular/enzimologia , Células Cultivadas , Condrócitos/citologia , Glicosaminoglicanos/análise , Imuno-Histoquímica , Técnicas In Vitro , Ratos , Costelas/citologia
9.
ACS Chem Biol ; 12(10): 2619-2630, 2017 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-28849908

RESUMO

Histone acetyltransferases of the MYST family are recruited to chromatin by BRPF scaffolding proteins. We explored functional consequences and the therapeutic potential of inhibitors targeting acetyl-lysine dependent protein interaction domains (bromodomains) present in BRPF1-3 in bone maintenance. We report three potent and selective inhibitors: one (PFI-4) with high selectivity for the BRPF1B isoform and two pan-BRPF bromodomain inhibitors (OF-1, NI-57). The developed inhibitors displaced BRPF bromodomains from chromatin and did not inhibit cell growth and proliferation. Intriguingly, the inhibitors impaired RANKL-induced differentiation of primary murine bone marrow cells and human primary monocytes into bone resorbing osteoclasts by specifically repressing transcriptional programs required for osteoclastogenesis. The data suggest a key role of BRPF in regulating gene expression during osteoclastogenesis, and the excellent druggability of these bromodomains may lead to new treatment strategies for patients suffering from bone loss or osteolytic malignant bone lesions.


Assuntos
Células da Medula Óssea/fisiologia , Proteínas de Transporte/metabolismo , Diferenciação Celular/fisiologia , Osteoclastos/fisiologia , Animais , Proteínas de Transporte/genética , Biologia Computacional , Humanos , Modelos Moleculares , Família Multigênica , Análise Serial de Proteínas , Conformação Proteica , Domínios Proteicos , Células-Tronco
10.
Bone ; 37(4): 530-44, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16054883

RESUMO

INTRODUCTION: Isolating and culturing primary chondrocytes such that they retain their cell type and differentiate to a hypertrophic state is central to many investigations of skeletal growth and its regulation. The ability to store frozen chondrocytes has additional scientific and tissue engineering interest. Previous work has produced approaches of varying yield and complexity but does not permit frozen storage of cells for subsequent differentiation in culture. Investigations of growth plate dysplasias secondary to defective osteoclastogenesis in rodent models of osteopetrosis led us to adapt and modify a culture method and to cryopreserve neonatal rat costochondral chondrocytes. METHODS: Chondrocytes were isolated from dissected ribs of 3-day-old rat pups by collagenase, hyaluronidase, and trypsin serial digestions. This was done either immediately or after the isolation was interrupted following an initial protease treatment to allow the chondrocytes, still in partially digested rib rudiments, to be frozen and later thawed for culture. Cells were plated in flat-bottom wells and allowed to adhere and grow under different conditions. Choice of media permitted cells to be maintained or induced to differentiate. Cell growth was monitored, as was expression of several relevant genes: collagen types II and X; osteocalcin, Sox9, adipocyte FABP, MyoD, aggrecan, and others. Mineralization was measured by alizarin red binding, and cultures were examined by light, fluorescence, and electron microscopy. RESULTS: Cells retained their chondrocyte phenotype and ability to differentiate and mineralize the collagen-rich extracellular matrix even after freezing-thawing. RT-PCR showed retention of chondrocyte-specific gene expression, including aggrecan and collagen II. The cells had a flattened, "proliferating zone" appearance initially, and by 2 weeks post-confluence, exhibited swelling and other salient features of hypertrophic cells seen in vivo. Collagen fibrils were abundant in the extracellular matrix, along with matrix vesicles. The switch to collagen type X as marker for hypertrophy was not rigidly temporally regulated as happens in vivo, but its expression increased during hypertrophic differentiation. CONCLUSIONS: This method should prove valuable as a means of studying chondrocyte regulation and has the advantages of simpler initial dissection, yields of a purer chondrocyte population, and the ability to stockpile frozen raw material for subsequent studies.


Assuntos
Diferenciação Celular , Condrócitos/citologia , Animais , Animais Recém-Nascidos , Sequência de Bases , Células Cultivadas , Condrócitos/metabolismo , Criopreservação , Primers do DNA , Expressão Gênica , Imuno-Histoquímica , Microscopia Eletrônica , Ratos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
11.
PLoS One ; 10(5): e0127537, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25992615

RESUMO

Plekhm1 is a large, multi-modular, adapter protein implicated in osteoclast vesicle trafficking and bone resorption. In patients, inactivating mutations cause osteopetrosis, and gain-of-function mutations cause osteopenia. Investigations of potential Plekhm1 interaction partners by mass spectrometry identified TRAFD1 (FLN29), a protein previously shown to suppress toll-like receptor signaling in monocytes/macrophages, thereby dampening inflammatory responses to innate immunity. We mapped the binding domains to the TRAFD1 zinc finger (aa 37-60), and to the region of Plekhm1 between its second pleckstrin homology domain and its C1 domain (aa 784-986). RANKL slightly increased TRAFD1 levels, particularly in primary osteoclasts, and the co-localization of TRAFD1 with Plekhm1 also increased with RANKL treatment. Stable knockdown of TRAFD1 in RAW 264.7 cells inhibited resorption activity proportionally to the degree of knockdown, and inhibited acidification. The lack of acidification occurred despite the presence of osteoclast acidification factors including carbonic anhydrase II, a3-V-ATPase, and the ClC7 chloride channel. Secretion of TRAP and cathepsin K were also markedly inhibited in knockdown cells. Truncated Plekhm1 in ia/ia osteopetrotic rat cells prevented vesicle localization of Plekhm1 and TRAFD1. We conclude that TRAFD1, in association with Plekhm1/Rab7-positive late endosomes-early lysosomes, has a previously unknown role in vesicle trafficking, acidification, and resorption in osteoclasts.


Assuntos
Ácidos/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Glicoproteínas de Membrana/metabolismo , Osteoclastos/metabolismo , Animais , Proteínas Relacionadas à Autofagia , Diferenciação Celular , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos , Osteoclastos/citologia , Ligação Proteica , RNA Mensageiro/genética , Ratos
12.
PLoS One ; 10(6): e0128275, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26042409

RESUMO

The fusion of monocyte/macrophage lineage cells into fully active, multinucleated, bone resorbing osteoclasts is a complex cell biological phenomenon that utilizes specialized proteins. OC-STAMP, a multi-pass transmembrane protein, has been shown to be required for pre-osteoclast fusion and for optimal bone resorption activity. A previously reported knockout mouse model had only mononuclear osteoclasts with markedly reduced resorption activity in vitro, but with paradoxically normal skeletal micro-CT parameters. To further explore this and related questions, we used mouse ES cells carrying a gene trap allele to generate a second OC-STAMP null mouse strain. Bone histology showed overall normal bone form with large numbers of TRAP-positive, mononuclear osteoclasts. Micro-CT parameters were not significantly different between knockout and wild type mice at 2 or 6 weeks old. At 6 weeks, metaphyseal TRAP-positive areas were lower and mean size of the areas were smaller in knockout femora, but bone turnover markers in serum were normal. Bone marrow mononuclear cells became TRAP-positive when cultured with CSF-1 and RANKL, but they did not fuse. Expression levels of other osteoclast markers, such as cathepsin K, carbonic anhydrase II, and NFATc1, were not significantly different compared to wild type. Actin rings were present, but small, and pit assays showed a 3.5-fold decrease in area resorbed. Restoring OC-STAMP in knockout cells by lentiviral transduction rescued fusion and resorption. N- and C-termini of OC-STAMP were intracellular, and a predicted glycosylation site was shown to be utilized and to lie on an extracellular loop. The site is conserved in all terrestrial vertebrates and appears to be required for protein stability, but not for fusion. Based on this and other results, we present a topological model of OC-STAMP as a 6-transmembrane domain protein. We also contrast the osteoclast-specific roles of OC- and DC-STAMP with more generalized cell fusion mechanisms.


Assuntos
Fusão Celular , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Osteoclastos/citologia , Osteoclastos/metabolismo , Fosfatase Ácida/metabolismo , Alelos , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Biomarcadores/metabolismo , Reabsorção Óssea/patologia , Sobrevivência Celular , Sequência Conservada , Fêmur/metabolismo , Fêmur/patologia , Regulação da Expressão Gênica , Glicosilação , Células HEK293 , Humanos , Isoenzimas/metabolismo , Lentivirus/metabolismo , Proteínas de Membrana/deficiência , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Animais , Dados de Sequência Molecular , Osteoclastos/enzimologia , Osteogênese , Fosfatase Ácida Resistente a Tartarato , Transdução Genética
13.
Cell Host Microbe ; 17(1): 58-71, 2015 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-25500191

RESUMO

The host endolysosomal compartment is often manipulated by intracellular bacterial pathogens. Salmonella (Salmonella enterica serovar Typhimurium) secrete numerous effector proteins, including SifA, through a specialized type III secretion system to hijack the host endosomal system and generate the Salmonella-containing vacuole (SCV). To form this replicative niche, Salmonella targets the Rab7 GTPase to recruit host membranes through largely unknown mechanisms. We show that Pleckstrin homology domain-containing protein family member 1 (PLEKHM1), a lysosomal adaptor, is targeted by Salmonella through direct interaction with SifA. By binding the PLEKHM1 PH2 domain, Salmonella utilize a complex containing PLEKHM1, Rab7, and the HOPS tethering complex to mobilize phagolysosomal membranes to the SCV. Depletion of PLEKHM1 causes a profound defect in SCV morphology with multiple bacteria accumulating in enlarged structures and significantly dampens Salmonella proliferation in multiple cell types and mice. Thus, PLEKHM1 provides a critical interface between pathogenic infection and the host endolysosomal system.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Bactérias/metabolismo , Glicoproteínas/metabolismo , Interações Hospedeiro-Patógeno , Glicoproteínas de Membrana/metabolismo , Salmonella typhimurium/crescimento & desenvolvimento , Vacúolos/microbiologia , Animais , Proteínas Relacionadas à Autofagia , Proteínas de Transporte/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas de Membrana , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Nucleares/metabolismo , Ligação Proteica , Mapeamento de Interação de Proteínas , Proteínas rab de Ligação ao GTP/metabolismo , proteínas de unión al GTP Rab7
14.
J Bone Miner Res ; 19(2): 183-9, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-14969387

RESUMO

UNLABELLED: The incisors absent rat is an osteopetrotic animal model. Segregation analysis in 37 affected animals from an outcross enabled us to assign the disease causing gene to a 4.7-cM interval on rat chromosome 10q32.1. Further analysis of the genes mapped in this region will provide more insight into the underlying pathogenesis. INTRODUCTION: Many of the insights into the factors that regulate the differentiation and activation of osteoclasts are gained from different spontaneous and genetically induced osteopetrotic animal models. The osteopetrotic incisors absent (ia) rat exhibits a generalized skeletal sclerosis and a delay of tooth eruption. Although the ia rat has well been studied phenotypically, the genetic defect still remains unknown. MATERIAL AND METHODS: To map the ia locus, we outcrossed the inbred ia strain with the inbred strain Brown Norway. Intercrossing F1 animals produced the F2 generation. Thirty-one mutant F2 animals and six mutant F4 animals were available for segregation analysis. RESULTS: Segregation analysis enabled us to assign the disease causing gene to rat chromosome 10q32.1. Homozygosity for the ia allele was obtained for two of the markers analyzed (D10Rat18 and D10Rat84). Key recombinations delineate a candidate region of 4.7 cM flanked by the markers D10Rat99 and D10Rat17. CONCLUSION: We have delineated a 4.7-cM region on rat chromosome 10q32.1 in which the gene responsible for the osteopetrotic phenotype of the ia rat is located. Although the sequence of this chromosomal region is not complete, over 140 known or putative genes have already been assigned to this region. Among these, several candidate genes with a putative role in osteoclast functioning can be identified. However, at this point, it cannot be excluded that one of the genes with a currently unknown function is involved in the pathogenesis of the ia rat. Further analysis of the genes mapped in this region will provide us more insight into the pathogenesis of this osteopetrotic animal model.


Assuntos
Mapeamento Cromossômico , Osteopetrose/genética , Animais , Modelos Animais de Doenças , Feminino , Masculino , Linhagem , Fenótipo , Ratos
15.
Crit Rev Eukaryot Gene Expr ; 13(2-4): 163-71, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-14696964

RESUMO

The study gives a further biochemical description of two different forms of autosomal dominant osteopetrosis (ADO) in relation to murine counterparts, with special attention to osteoblast function and the recent discovery of LRP5 gene mutations in ADO I. Patients and controls were investigated for markers of bone formation and resorption at baseline and following stimulation with thyroid hormone. Moreover, four different well-described murine models of osteopetrosis were investigated. Concerning the human forms, serum TSH levels decreased in all subjects, indicating effects on the target tissue. Osteocalcin and cross-linked collagen (NTx) were without significant differences among the groups. Significant increases in both markers were seen following stimulation. Baseline active TGF-beta1 levels were increased in both types of ADO (60% in ADO I [P = 0.006]; 46% in ADO II [P = 0.001], respectively), whereas fibronectin levels were decreased in both (ADO I 58% and ADO II 63% of normal, respectively [P = 0.012 and P = 0.001]). Following treatment, levels increased temporarily in all groups. In the murine models, active TGF-beta1 was significantly decreased in the tl- and ia-rat, whereas fibronectin levels were decreased in the mi-mouse, however, increased in the ia-rat. In conclusion, both types of ADO showed the same qualitative biochemical differences compared to controls, except that OPG levels were higher in ADO I. The decreased fibronectin levels in both types and in murine models reflect decreased bone resorption; however, this may also indicate hitherto unrecognized alterations in bone formation. Biochemical differences among known syndromes related to mutations in the LRP5 gene indicate different underlying pathogenetic mechanisms.


Assuntos
Fibronectinas/sangue , Mutação , Osteopetrose/genética , Fator de Crescimento Transformador beta/sangue , Adulto , Animais , Osso e Ossos/metabolismo , Colágeno/metabolismo , Modelos Animais de Doenças , Feminino , Fibronectinas/metabolismo , Genes Dominantes , Glioma/genética , Hemoglobina M/genética , Humanos , Proteínas Relacionadas a Receptor de LDL , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Masculino , Camundongos , Pessoa de Meia-Idade , Osteocalcina/química , Ratos , Receptores de LDL/genética , Síndrome , Hormônios Tireóideos/sangue , Fatores de Tempo
16.
Crit Rev Eukaryot Gene Expr ; 13(2-4): 181-93, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-14696966

RESUMO

A "bone" is really a dynamic and highly interactive complex of many cell and tissue types. In particular, for the majority of skeletal elements to develop and grow, the process of endochondral ossification requires a constantly moving interface between cartilage, invading blood vessels, and bone. A great deal has been learned in recent years about the regulation of chondrocyte proliferation and differentiation by hormones, growth factors, and physiologic stimuli during skeletal development and growth. Likewise, the discovery that colony stimulating factor-1 (CSF-1, or M-CSF) and receptor activator of NF-kappaB ligand (RANKL, a tumor necrosis factor superfamily member also called TRANCE, ODF, OPGL, and TNFSF11) are pivotal in communicating from osteoblasts to osteoclasts has led to deeper insights into bone growth, turnover, and maintenance. Little is known, however, about how these two quite different systems communicate to solve the problem of providing integrated, continuous mechanical support during the dynamic invasion of cartilage by bone that characterizes endochondral bone growth. Evidence has accumulated in recent years that provides insight into the communication between growing bone and cartilage in the form of a subset of osteopetrotic mutations, which share a lack of osteoclasts and an accompanying chondrodysplasia of the growth plate. These mutations thus implicate some of the same gene products in regulating chondrocyte differentiation and bone resorption. We also consider expression studies of some known growth plate regulators, such as parathyroid hormone-related protein (PTHrP) and Indian hedgehog (Ihh), in light of this and propose a model in which the osteoclastogenic factors act also on chondrocytes, but downstream of PTRrP and Ihh in regulating proliferation and differentiation, and after early morphogenic patterns are established.


Assuntos
Condrócitos/citologia , Lâmina de Crescimento/citologia , Animais , Proteínas de Transporte/metabolismo , Diferenciação Celular , Divisão Celular , Condrócitos/metabolismo , Modelos Animais de Doenças , Proteínas Hedgehog , Humanos , Fator Estimulador de Colônias de Macrófagos/metabolismo , Glicoproteínas de Membrana/metabolismo , Camundongos , Modelos Biológicos , Mutação , NF-kappa B/metabolismo , Osteoclastos/metabolismo , Hormônio Paratireóideo/metabolismo , Ligante RANK , Ratos , Receptor Ativador de Fator Nuclear kappa-B , Transativadores/metabolismo
17.
J Orthop Res ; 32(12): 1562-71, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25125336

RESUMO

Because Chondrosarcoma is resistant to available chemotherapy and radiation regimens, wide resection is the mainstay in treatment, which frequently results in high morbidity and which may not prevent local recurrence. There is a clear need for improved adjuvant treatment of this malignancy. We have observed the presence of osteoclasts in the microenvironment of chondrosarcoma in human pathological specimens. We utilized the Swarm rat chondrosarcoma (SRC) model to test the hypothesis that osteoclasts affect chondrosarcoma pathogenesis. We implanted SRC tumors in tibia of Sprague-Dawley rats and analyzed bone histologically and radiographically for bone destruction and tumor growth. At three weeks, tumors invaded local bone causing cortical disruption and trabecular resorption. Bone destruction was accompanied by increased osteoclast number and resorbed bone surface. Treatment of rats with the zoledronic acid prevented cortical destruction, inhibited trabecular resorption, and resulted in decreased tumor volume in bone. To confirm that inhibition of osteoclasts per se, and not off-target effects of drug, was responsible for the prevention of tumor growth and bone destruction, we implanted SRC into osteopetrotic rat tibia. SRC-induced bone destruction and tumor growth were impaired in osteopetrotic bone compared with control bone. The results from our animal model demonstrate that osteoclasts contribute to chondrosarcoma-mediated bone destruction and tumor growth and may represent a therapeutic target in particular chondrosarcoma patients.


Assuntos
Osso e Ossos/patologia , Condrossarcoma/patologia , Osteoclastos/fisiologia , Animais , Reabsorção Óssea/etiologia , Reabsorção Óssea/prevenção & controle , Difosfonatos/farmacologia , Imidazóis/farmacologia , Masculino , Proteína Relacionada ao Hormônio Paratireóideo/análise , Ratos , Ratos Sprague-Dawley , Fator de Crescimento Transformador beta2/análise , Ácido Zoledrônico
18.
J Cell Biol ; 204(7): 1083-6, 2014 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-24687277

RESUMO

The mitochondrial inner membrane contains a large protein complex that functions in inner membrane organization and formation of membrane contact sites. The complex was variably named the mitochondrial contact site complex, mitochondrial inner membrane organizing system, mitochondrial organizing structure, or Mitofilin/Fcj1 complex. To facilitate future studies, we propose to unify the nomenclature and term the complex "mitochondrial contact site and cristae organizing system" and its subunits Mic10 to Mic60.


Assuntos
Membranas Mitocondriais/química , Proteínas Mitocondriais/química , Subunidades Proteicas/química , Animais , Humanos , Modelos Moleculares , Complexos Multiproteicos/química , Terminologia como Assunto
19.
Biochem Mol Biol Educ ; 38(6): 385-92, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21567867

RESUMO

A key goal of molecular/cell biology/biotechnology is to identify essential genes in virtually every physiological process to uncover basic mechanisms of cell function and to establish potential targets of drug therapy combating human disease. This article describes a semester-long, project-oriented molecular/cellular/biotechnology laboratory providing students, within a framework of bone cell biology, with a modern approach to gene discovery. Students are introduced to the topics of bone cells, bone synthesis, bone resorption, and osteoporosis. They then review the theory of microchip gene arrays, and study microchip array data generated during the differentiation of bone-resorbing osteoclasts in vitro. The class selects genes whose expression increases during osteoclastogenesis, and researches them in small groups using web-based bioinformatics tools. Students then go to a biotechnology company website to find and order small inhibitory RNAs (siRNAs) designed to "knockdown" expression of the gene of interest. Students then learn to transfect these siRNAs into osteoclasts, stimulate the cells to differentiate, assay osteoclast differentiation in vitro, and measure specific gene expression using real-time PCR and immunoblotting. Specific siRNA knockdown resulting in a decrease in osteoclastogenesis is indicative of a gene's physiological relevance. The results are analyzed statistically and presented to the class in groups. In the past 2 years, students identified several genes essential for optimal osteoclast differentiation, including Myo1d. The students hypothesize that the myo1d protein functions in osteoclasts to deliver important proteins to the cell surface via vesicular transport along microfilaments. Student response to the new course was overwhelmingly positive.

20.
Antioxid Redox Signal ; 13(1): 27-37, 2010 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-19951071

RESUMO

The central role of reactive oxygen species (ROS) in osteoclast differentiation and in bone homeostasis prompted us to characterize the redox regulatory system of osteoclasts. In this report, we describe the expression and functional characterization of PAMM, a CXXC motif-containing peroxiredoxin 2-like protein expressed in bone marrow monocytes on stimulation with M-CSF and RANKL. Expression of wild-type (but not C to G mutants of the CXXC domain) PAMM in HEK293 cells results in an increased GSH/GSSG ratio, indicating a shift toward a more reduced environment. Expression of PAMM in RAW264.7 monocytes protected cells from hydrogen peroxide-induced oxidative stress, indicating that PAMM regulates cellular redox status. RANKL stimulation of RAW 264.7 cells caused a decrease in the GSH/GSSG ratio (reflecting a complementary increase in ROS). In addition, RANKL-induced osteoclast formation requires phosphorylation and translocation of NF-kappaB and c-Jun. In stably transfected RAW 264.7 cells, PAMM overexpression prevented the reduction of GSH/GSSG induced by RANKL. Concurrently, PAMM expression completely abolished RANKL-induced p100 NF-kappaB and c-Jun activation, as well as osteoclast formation. We conclude that PAMM is a redox regulatory protein that modulates osteoclast differentiation in vitro. PAMM expression may affect bone resorption in vivo and help to maintain bone mass.


Assuntos
Diferenciação Celular , Osteoclastos/citologia , Osteoclastos/metabolismo , Peroxirredoxinas/metabolismo , Sequência de Aminoácidos , Animais , Sobrevivência Celular , Células Cultivadas , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Camundongos , Dados de Sequência Molecular , NF-kappa B/antagonistas & inibidores , NF-kappa B/metabolismo , Estresse Oxidativo , Peroxirredoxinas/química , Peroxirredoxinas/genética , RNA Mensageiro/genética , Ratos , Ratos Mutantes , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA