Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Br J Haematol ; 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39313917

RESUMO

This study compared decitabine exposure when administered IV (DEC-IV) at a dose of 20 mg/m2 for 5-days with orally administered decitabine with cedazuridine (DEC-C), as well as the clinical efficacy and safety of DEC-C in patients with acute myeloid leukaemia (AML) who were ineligible for intensive induction chemotherapy. In all, 89 patients were randomised 1:1 to DEC-IV or oral DEC-C (days 1-5 in a 28-day treatment cycle), followed by 5 days of the other formulation in the next treatment cycle. All patients received oral DEC-C for subsequent treatment cycles until treatment discontinuation. Equivalent systemic decitabine exposures were demonstrated (5-day area under the curve ratio between the two decitabine formulations of 99.64 [90% confidence interval 91.23%, 108.80%]). Demethylation rates also were similar (≤1.1% difference). Median overall survival (OS), clinical response and safety profile with oral DEC-C were consistent with those previously observed with DEC-IV. Next-generation sequencing was performed to identify molecular abnormalities that impact OS and TP53 mutations were associated with a poor outcome. These findings support the use of oral DEC-C in patients with AML.

2.
Blood ; 136(6): 674-683, 2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32285126

RESUMO

This phase 2 study was designed to compare systemic decitabine exposure, demethylation activity, and safety in the first 2 cycles with cedazuridine 100 mg/decitabine 35 mg vs standard decitabine 20 mg/m2 IV. Adults with International Prognostic Scoring System intermediate-1/2- or high-risk myelodysplastic syndromes (MDS) or chronic myelomonocytic leukemia (CMML) were randomized 1:1 to receive oral cedazuridine/decitabine or IV decitabine in cycle 1, followed by crossover to the other treatment in cycle 2. All patients received oral cedazuridine/decitabine in subsequent cycles. Cedazuridine and decitabine were given initially as separate capsules in a dose-confirmation stage and then as a single fixed-dose combination (FDC) tablet. Primary end points: mean decitabine systemic exposure (geometric least-squares mean [LSM]) of oral/IV 5-day area under curve from time 0 to last measurable concentration (AUClast), percentage long interspersed nuclear element 1 (LINE-1) DNA demethylation for oral cedazuridine/decitabine vs IV decitabine, and clinical response. Eighty patients were randomized and treated. Oral/IV ratios of geometric LSM 5-day AUClast (80% confidence interval) were 93.5% (82.1-106.5) and 97.6% (80.5-118.3) for the dose-confirmation and FDC stages, respectively. Differences in mean %LINE-1 demethylation between oral and IV were ≤1%. Clinical responses were observed in 48 patients (60%), including 17 (21%) with complete response. The most common grade ≥3 adverse events regardless of causality were neutropenia (46%), thrombocytopenia (38%), and febrile neutropenia (29%). Oral cedazuridine/decitabine (100/35 mg) produced similar systemic decitabine exposure, DNA demethylation, and safety vs decitabine 20 mg/m2 IV in the first 2 cycles, with similar efficacy. This study is registered at www.clinicaltrials.gov as #NCT02103478.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Leucemia Mielomonocítica Crônica/tratamento farmacológico , Síndromes Mielodisplásicas/tratamento farmacológico , Adulto , Idoso , Idoso de 80 Anos ou mais , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/farmacocinética , Área Sob a Curva , Cápsulas , Estudos Cross-Over , Metilação de DNA/efeitos dos fármacos , DNA-Citosina Metilases/antagonistas & inibidores , Decitabina/administração & dosagem , Decitabina/efeitos adversos , Decitabina/farmacocinética , Decitabina/farmacologia , Progressão da Doença , Combinação de Medicamentos , Monitoramento de Medicamentos , Feminino , Gastroenteropatias/induzido quimicamente , Doenças Hematológicas/induzido quimicamente , Humanos , Estimativa de Kaplan-Meier , Análise dos Mínimos Quadrados , Leucemia Mieloide Aguda/prevenção & controle , Elementos Nucleotídeos Longos e Dispersos/efeitos dos fármacos , Masculino , Pessoa de Meia-Idade , Proteínas de Neoplasias/antagonistas & inibidores , Comprimidos , Uridina/administração & dosagem , Uridina/efeitos adversos , Uridina/análogos & derivados , Uridina/farmacocinética , Uridina/farmacologia
3.
Xenobiotica ; 52(8): 786-796, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36537234

RESUMO

Paxlovid, a drug combining nirmatrelvir and ritonavir, was designed for the treatment of COVID-19 and its rapid development has led to emergency use approval by the FDA to reduce the impact of COVID-19 infection on patients.In order to overcome potentially suboptimal therapeutic exposures, nirmatrelvir is dosed in combination with ritonavir to boost the pharmacokinetics of the active product.Here we consider examples of drugs co-administered with pharmacoenhancers.Pharmacoenhancers have been adopted for multiple purposes such as ensuring therapeutic exposure of the active product, reducing formation of toxic metabolites, changing the route of administration, and increasing the cost-effectiveness of a therapy.We weigh the benefits and risks of this approach, examining the impact of technology developments on drug design and how enhanced integration between cross-discipline teams can improve the outcome of drug discovery.


Assuntos
COVID-19 , Descoberta de Drogas , Ritonavir , Humanos , Indústria Farmacêutica , Miotonina Proteína Quinase
4.
Future Oncol ; 17(16): 2077-2087, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33709786

RESUMO

Myelodysplastic syndrome (MDS) and chronic myelomonocytic leukemia (CMML) are clonal hematopoietic stem cell disorders. Complex disease biology has posed significant challenge to the development of novel therapeutics. Despite myriad clinical trials, none have been superior to azacitidine and decitabine (DEC) therapy. These therapies present a substantial burden for patients with 5 and 7 days of parenteral treatment in an infusion clinic. To overcome this limitation, a fixed drug combination of oral DEC-cedazuridine (C-DEC), a cytidine deaminase inhibitor with documented safety profile was developed. This drug was recently approved by the US FDA, Australian TGA and Health Canada for newly diagnosed or previously treated intermediate or high risk by international prognostic scoring system, MDS and CMML. In this review, we detail the pharmacokinetic and clinical activity of C-DEC in the management of MDS and CMML.


Lay abstract Myelodysplastic syndrome (MDS) and chronic myelomonocytic leukemia are rare types of blood cancers. When treatment for these conditions is required, azacitidine or decitabine are the most commonly used chemotherapies. These medications are administered into blood through a medical port. Since these cancers are common in elderly, management of the port and frequent visits to infusion centers for treatment leads to noncompliance with treatment plan. With addition of a new compound by name cedazuridine to decitabine, now a new US FDA-approved medication, INQOVI® (decitabine and cedazuridine) can be taken by mouth at home. This new treatment has shown to be equally effective with a similar safety profile to decitabine. In this review article, we describe the investigational details and drug development of the oral medication, INQOVI®.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Aprovação de Drogas/métodos , Leucemia Mielomonocítica Crônica/tratamento farmacológico , Síndromes Mielodisplásicas/tratamento farmacológico , Animais , Decitabina/administração & dosagem , Gerenciamento Clínico , Humanos , Leucemia Mielomonocítica Crônica/genética , Leucemia Mielomonocítica Crônica/patologia , Síndromes Mielodisplásicas/genética , Síndromes Mielodisplásicas/patologia , Resultado do Tratamento , Uridina/administração & dosagem , Uridina/análogos & derivados
5.
Invest New Drugs ; 38(4): 1085-1095, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-31605293

RESUMO

Purpose The objective of this mass balance trial was to determine the excretory pathways and metabolic profile of the novel anticancer agent guadecitabine in humans after administration of a 14C-radiolabeled dose of guadecitabine. Experimental design Included patients received at least one cycle of 45 mg/m2 guadecitabine subcutaneously as once-daily doses on Days 1 to 5 of a 28-day cycle, of which the 5th (last) dose in the first cycle was spiked with 14C-radiolabeled guadecitabine. Using different mass spectrometric techniques in combination with off-line liquid scintillation counting, the exposure and excretion of 14C-guadecitabine and metabolites in the systemic circulation, excreta, and intracellular target site were established. Results Five patients were enrolled in the mass balance trial. 14C-guadecitabine radioactivity was rapidly and almost exclusively excreted in urine, with an average amount of radioactivity recovered of 90.2%. After uptake in the systemic circulation, guadecitabine was converted into ß-decitabine (active anomer), and from ß-decitabine into the presumably inactive metabolites M1-M5. All identified metabolites in plasma and urine were ß-decitabine related products, suggesting almost complete conversion via cleavage of the phosphodiester bond between ß-decitabine and deoxyguanosine prior to further elimination. ß-decitabine enters the intracellular activation pathway, leading to detectable ß-decitabine-triphosphate and DNA incorporated ß-decitabine levels in peripheral blood mononuclear cells, providing confirmation that the drug reaches its DNA target site. Conclusion The metabolic and excretory pathways of guadecitabine and its metabolites were successfully characterized after subcutaneous guadecitabine administration in cancer patients. These data support the clinical evaluation of safety and efficacy of the subcutaneous guadecitabine drug product.


Assuntos
Antineoplásicos/farmacocinética , Azacitidina/análogos & derivados , Neoplasias/metabolismo , Idoso , Antineoplásicos/sangue , Antineoplásicos/urina , Azacitidina/sangue , Azacitidina/farmacocinética , Azacitidina/urina , Radioisótopos de Carbono , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias/sangue , Neoplasias/urina
6.
Lancet Oncol ; 16(9): 1099-1110, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26296954

RESUMO

BACKGROUND: Hypomethylating agents are used to treat cancers driven by aberrant DNA methylation, but their short half-life might limit their activity, particularly in patients with less proliferative diseases. Guadecitabine (SGI-110) is a novel hypomethylating dinucleotide of decitabine and deoxyguanosine resistant to degradation by cytidine deaminase. We aimed to assess the safety and clinical activity of subcutaneously given guadecitabine in patients with acute myeloid leukaemia or myelodysplastic syndrome. METHODS: In this multicentre, open-label, phase 1 study, patients from nine North American medical centres with myelodysplastic syndrome or acute myeloid leukaemia that was refractory to or had relapsed after standard treatment were randomly assigned (1:1) to receive subcutaneous guadecitabine, either once-daily for 5 consecutive days (daily × 5), or once-weekly for 3 weeks, in a 28-day treatment cycle. Patients were stratified by disease. A 3 + 3 dose-escalation design was used in which we treated patients with guadecitabine doses of 3-125 mg/m(2) in separate dose-escalation cohorts. A twice-weekly treatment schedule was added to the study after a protocol amendment. The primary objective was to assess safety and tolerability of guadecitabine, determine the maximum tolerated and biologically effective dose, and identify the recommended phase 2 dose of guadecitabine. Safety analyses included all patients who received at least one dose of guadecitabine. Pharmacokinetic and pharmacodynamic analyses to determine the biologically effective dose included all patients for whom samples were available. This study is registered with ClinicalTrials.gov, number NCT01261312. FINDINGS: Between Jan 4, 2011, and April 11, 2014, we enrolled and treated 93 patients: 35 patients with acute myeloid leukaemia and nine patients with myelodysplastic syndrome in the daily × 5 dose-escalation cohorts, 28 patients with acute myeloid leukaemia and six patients with myelodysplastic syndrome in the once-weekly dose-escalation cohorts, and 11 patients with acute myeloid leukaemia and four patients with myelodysplastic syndrome in the twice-weekly dose-escalation cohorts. The most common grade 3 or higher adverse events were febrile neutropenia (38 [41%] of 93 patients), pneumonia (27 [29%] of 93 patients), thrombocytopenia (23 [25%] of 93 patients), anaemia (23 [25%] of 93 patients), and sepsis (16 [17%] of 93 patients). The most common serious adverse events were febrile neutropenia (29 [31%] of 93 patients), pneumonia (26 [28%] of 93 patients), and sepsis (16 [17%] of 93 patients). Six of the 74 patients with acute myeloid leukaemia and six of the 19 patients with myelodysplastic syndrome had a clinical response to treatment. Two dose-limiting toxicities were noted in patients with myelodysplastic syndrome at 125 mg/m(2) daily × 5, thus the maximum tolerated dose in patients with myelodysplastic syndrome was 90 mg/m(2) daily × 5. The maximum tolerated dose was not reached in patients with acute myeloid leukaemia. Potent dose-related DNA demethylation occurred on the daily × 5 regimen, reaching a plateau at 60 mg/m(2) (designated as the biologically effective dose). INTERPRETATION: Guadecitabine given subcutaneously at 60 mg/m(2) daily × 5 is well tolerated and is clinically and biologically active in patients with myelodysplastic syndrome and acute myeloid leukaemia. Guadecitabine 60 mg/m(2) daily × 5 is the recommended phase 2 dose, and these findings warrant further phase 2 studies. FUNDING: Astex Pharmaceuticals, Stand Up To Cancer.


Assuntos
Azacitidina/análogos & derivados , Relação Dose-Resposta a Droga , Leucemia Mieloide Aguda/tratamento farmacológico , Síndromes Mielodisplásicas/tratamento farmacológico , Adulto , Idoso , Protocolos de Quimioterapia Combinada Antineoplásica , Azacitidina/administração & dosagem , Decitabina , Intervalo Livre de Doença , Feminino , Humanos , Leucemia Mieloide Aguda/patologia , Masculino , Dose Máxima Tolerável , Pessoa de Meia-Idade , Síndromes Mielodisplásicas/patologia , Estadiamento de Neoplasias , Prognóstico
7.
Int J Cancer ; 135(9): 2223-31, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24668305

RESUMO

The DNA methyltransferase (DNMT) inhibitor vidaza (5-Azacytidine) in combination with the histone deacetylase inhibitor entinostat has shown promise in treating lung cancer and this has been replicated in our orthotopic lung cancer model. However, the effectiveness of DNMT inhibitors against solid tumors is likely impacted by their limited stability and rapid inactivation by cytidine deaminase (CDA) in the liver. These studies were initiated to test the efficacy of SGI-110, a dinucleotide containing decitabine that is resistant to deamination by CDA, as a single agent and in combination with entinostat. Evaluation of in vivo plasma concentrations and pharmacokinetic properties of SGI-110 showed rapid conversion to decitabine and a plasma half-life of 4 hr. SGI-110 alone or in combination with entinostat reduced tumor burden of a K-ras/p53 mutant lung adenocarcinoma cell line (Calu6) engrafted orthotopically in nude rats by 35% and 56%, respectively. SGI-110 caused widespread demethylation of more than 300 gene promoters and microarray analysis revealed expression changes for 212 and 592 genes with SGI-110 alone or in combination with entinostat. Epigenetic therapy also induced demethylation and expression of cancer testis antigen genes that could sensitize tumor cells to subsequent immunotherapy. In the orthotopically growing tumors, highly significant gene expression changes were seen in key cancer regulatory pathways including induction of p21 and the apoptotic gene BIK. Moreover, SGI-110 in combination with entinostat caused widespread epigenetic reprogramming of EZH2-target genes. These preclinical in vivo findings demonstrate the clinical potential of SGI-110 for reducing lung tumor burden through reprogramming the epigenome.


Assuntos
Antineoplásicos/uso terapêutico , Azacitidina/análogos & derivados , Benzamidas/uso terapêutico , Epigênese Genética/efeitos dos fármacos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/prevenção & controle , Piridinas/uso terapêutico , Carga Tumoral/efeitos dos fármacos , Animais , Protocolos de Quimioterapia Combinada Antineoplásica , Azacitidina/uso terapêutico , Biomarcadores Tumorais/genética , Perfilação da Expressão Gênica , Fatores Imunológicos/uso terapêutico , Neoplasias Pulmonares/patologia , Masculino , Análise de Sequência com Séries de Oligonucleotídeos , RNA Mensageiro/genética , Ratos , Ratos Nus , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
8.
Lancet Haematol ; 11(1): e15-e26, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38135371

RESUMO

BACKGROUND: The DNA methyltransferase inhibitors azacitidine and decitabine for individuals with myelodysplastic syndromes or chronic myelomonocytic leukaemia are available in parenteral form. Oral therapy with similar exposure for these diseases would offer potential treatment benefits. We aimed to compare the safety and pharmacokinetics of oral decitabine plus the cytidine deaminase inhibitor cedazuridine versus intravenous decitabine. METHODS: We did a registrational, multicentre, open-label, crossover, phase 3 trial of individuals with myelodysplastic syndromes or chronic myelomonocytic leukaemia and individuals with acute myeloid leukaemia, enrolled as separate cohorts; results for only participants with myelodysplastic syndromes or chronic myelomonocytic leukaemia are reported here. In 37 academic and community-based clinics in Canada and the USA, we enrolled individuals aged 18 years or older who were candidates to receive intravenous decitabine, with Eastern Cooperative Oncology Group performance status 0 or 1 and a life expectancy of at least 3 months. Participants were randomly assigned (1:1) to receive 5 days of oral decitabine-cedazuridine (one tablet once daily containing 35 mg decitabine and 100 mg cedazuridine as a fixed-dose combination) or intravenous decitabine (20 mg/m2 per day by continuous 1-h intravenous infusion) in a 28-day treatment cycle, followed by 5 days of the other formulation in the next treatment cycle. Thereafter, all participants received oral decitabine-cedazuridine from the third cycle on until treatment discontinuation. The primary endpoint was total decitabine exposure over 5 days with oral decitabine-cedazuridine versus intravenous decitabine for cycles 1 and 2, measured as area under the curve in participants who received the full treatment dose in cycles 1 and 2 and had decitabine daily AUC0-24 for both oral decitabine-cedazuridine and intravenous decitabine (ie, paired cycles). On completion of the study, all patients were rolled over to a maintenance study. This study is registered with ClinicalTrials.gov, NCT03306264. FINDINGS: Between Feb 8, 2018, and June 7, 2021, 173 individuals were screened, 138 (80%) participants were randomly assigned to a treatment sequence, and 133 (96%) participants (87 [65%] men and 46 [35%] women; 121 [91%] White, four [3%] Black or African-American, three [2%] Asian, and five [4%] not reported) received treatment. Median follow-up was 966 days (IQR 917-1050). Primary endpoint of total exposure of oral decitabine-cedazuridine versus intravenous decitabine was 98·93% (90% CI 92·66-105·60), indicating equivalent pharmacokinetic exposure on the basis of area under the curve. The safety profiles of oral decitabine-cedazuridine and intravenous decitabine were similar. The most frequent adverse events of grade 3 or worse were thrombocytopenia (81 [61%] of 133 participants), neutropenia (76 [57%] participants), and anaemia (67 [50%] participants). The incidence of serious adverse events in cycles 1-2 was 31% (40 of 130 participants) with oral decitabine-cedazuridine and 18% (24 of 132 participants) with intravenous decitabine. There were five treatment-related deaths; two deemed related to oral therapy (sepsis and pneumonia) and three to intravenous treatment (septic shock [n=2] and pneumonia [n=1]). INTERPRETATION: Oral decitabine-cedazuridine was pharmacologically and pharmacodynamically equivalent to intravenous decitabine. The results support use of oral decitabine-cedazuridine as a safe and effective alternative to intravenous decitabine for treatment of individuals with myelodysplastic syndromes or chronic myelomonocytic leukaemia. FUNDING: Astex Pharmaceuticals.


Assuntos
Leucemia Mielomonocítica Crônica , Síndromes Mielodisplásicas , Pneumonia , Masculino , Humanos , Feminino , Decitabina/efeitos adversos , Resultado do Tratamento , Leucemia Mielomonocítica Crônica/tratamento farmacológico , Síndromes Mielodisplásicas/tratamento farmacológico , Síndromes Mielodisplásicas/etiologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Pneumonia/etiologia
9.
Anal Sci Adv ; 3(5-6): 198-204, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38716121

RESUMO

Tolinapant (ASTX660), a pan-selective inhibitor of apoptosis protein antagonist with dual cIAP/XIAP activity, was identified as a clinical candidate in preclinical efficacy, pharmacokinetic and safety studies. In order to assess tolinapant in first-in-human Phase I/II clinical trials, a validated bioanalytical method was required to determine plasma pharmacokinetics. Tolinapant and d4-tolinapant were extracted from human plasma using liquid-liquid extraction. Separation chromatography was performed on a Acquity BEH C18 1.7 µM, 50 mm × 2.1 mm i.d. column, using a mobile phase of 0.1% formic acid in water and 0.1% formic acid in acetonitrile. Mass spectrometry detection was performed by positive turbo ion spray ionisation, in multiple reaction monitoring mode. The method was validated according to the US Food and Drug Administration (FDA) guidelines. The method has a quantifiable linear range of 1-500 ng/mL (r 2 = 0.999). The intra- and inter-day coefficients of variation were < 11.4%. Dilution QC samples agreed with prepared concentrations, with a precision of 1.5% and accuracy of 101%. Tolinapant mean recoveries ranged from 85.1-94.4 % with negligible matrix effects. A highly sensitive and selective LC-MS/MS bioanalytical method was developed and validated. The method was successfully applied in Phase 1/2 clinical trials to determine the human pharmacokinetic profile of tolinapant.

10.
Proc Natl Acad Sci U S A ; 105(25): 8754-9, 2008 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-18559859

RESUMO

The amyloid hypothesis states that a variety of neurotoxic beta-amyloid (Abeta) species contribute to the pathogenesis of Alzheimer's disease. Accordingly, a key determinant of disease onset and progression is the appropriate balance between Abeta production and clearance. Enzymes responsible for the degradation of Abeta are not well understood, and, thus far, it has not been possible to enhance Abeta catabolism by pharmacological manipulation. We provide evidence that Abeta catabolism is increased after inhibition of plasminogen activator inhibitor-1 (PAI-1) and may constitute a viable therapeutic approach for lowering brain Abeta levels. PAI-1 inhibits the activity of tissue plasminogen activator (tPA), an enzyme that cleaves plasminogen to generate plasmin, a protease that degrades Abeta oligomers and monomers. Because tPA, plasminogen and PAI-1 are expressed in the brain, we tested the hypothesis that inhibitors of PAI-1 will enhance the proteolytic clearance of brain Abeta. Our data demonstrate that PAI-1 inhibitors augment the activity of tPA and plasmin in hippocampus, significantly lower plasma and brain Abeta levels, restore long-term potentiation deficits in hippocampal slices from transgenic Abeta-producing mice, and reverse cognitive deficits in these mice.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Fibrinolisina/metabolismo , Fibrinolíticos/metabolismo , Animais , Humanos , Imuno-Histoquímica , Camundongos , Camundongos Transgênicos , Inativadores de Plasminogênio/metabolismo , Ativador de Plasminogênio Tecidual/antagonistas & inibidores , Ativador de Plasminogênio Tecidual/metabolismo
11.
Drug Metab Dispos ; 38(9): 1471-9, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20516255

RESUMO

Bazedoxifene (BZA) acetate, a novel estrogen receptor modulator being developed for the prevention and treatment of postmenopausal osteoporosis, undergoes extensive metabolism in women after oral administration. In this study, the in vitro metabolism of [(14)C]BZA was determined in human hepatocytes and hepatic and intestinal microsomes, and the UDP glucuronosyltransferase (UGT) isozymes involved in the glucuronidation of BZA were identified. In addition, BZA was evaluated for its potential as a substrate of P-glycoprotein (P-gp) transporter in Caco-2 cell monolayers. BZA was metabolized to two monoglucuronides, BZA-4'-glucuronide and BZA-5-glucuronide, in hepatocytes and in liver and intestinal microsomes including jejunum, duodenum, and ileum. Both BZA-4'-glucuronide and BZA-5-glucuronide were major metabolites in the intestinal microsomes, whereas BZA-4'-glucuronide was the predominant metabolite in liver microsomes and hepatocytes. The kinetic parameters of BZA-4'-glucuronide formation were determined in liver, duodenum, and jejunum microsomes and with UGT1A1, 1A8, and 1A10, the most active UGT isoforms involved in the glucuronidation of BZA, whereas those of BZA-5-glucuronide were determined with all the enzyme systems except in liver microsomes and in UGT1A1 because the formation of the BZA-5-glucuronide was too low. K(m) values in liver, duodenum, and jejunum microsomes and UGT1A1, 1A8, and 1A10, were similar and ranged from 5.1 to 33.1 microM for BZA-4'-glucuronide formation and from 2.5 to 11.1 microM for BZA-5-glucuronide formation. V(max) values ranged from 0.8 to 2.9 nmol/(min . mg) protein for BZA-4'-glucuronide and from 0.1 to 1.2 nmol/(min . mg) protein for BZA-5-glucuronide. In Caco-2 cells, BZA appeared to be a P-gp substrate.


Assuntos
Moduladores de Receptor Estrogênico/farmacocinética , Indóis/farmacocinética , Disponibilidade Biológica , Células CACO-2 , Cromatografia Líquida de Alta Pressão , Moduladores de Receptor Estrogênico/metabolismo , Feminino , Humanos , Indóis/metabolismo , Espectrometria de Massas , Microssomos/metabolismo
12.
Drug Metab Dispos ; 38(7): 1083-93, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20400660

RESUMO

The study was initiated as an observation of incomplete extraction recovery of N-(4-(3-chloro-4-(2-pyridinylmethoxy)anilino)-3-cyano-7-ethoxy-6-quinolyl)-4-(dimethylamino)-2-butenamide (HKI-272) from human plasma. The objective of this study was to 1) identify the binding site(s) of HKI-272 to human plasma protein(s); 2) characterize the nature of the binding; and 3) evaluate the potential reversibility of the covalent binding. After incubation of [(14)C]HKI-272 with human plasma, the mixture was directly injected on liquid chromatography/mass spectrometry (LC/MS), and an intact molecular mass of HKI-272 human serum albumin (HSA) adduct was determined to be 66,999 Da, which is 556 Da (molecular mass of HKI-272) larger than the measured molecular mass of HSA (66,443 Da). For peptide mapping, the incubation mixture was separated with SDS-polyacrylamide gel electrophoresis followed by tryptic digestion combined with LC/tandem MS. A radioactive peptide fragment, LDELRDEGKASSAK [amino acid (AA) residue 182-195 of albumin], was confirmed to covalently bind to HKI-272. In addition, after HCl hydrolysis, a radioactive HKI-272-lysine adduct was identified by LC/MS. After combining the results of tryptic digestion and HCl hydrolysis, the AA residue of Lys190 of HSA was confirmed to covalently bind to HKI-272. A standard HKI-272-lysine was synthesized and characterized by NMR. The data showed that the adduct was formed via Michael addition with the epsilon-amine of lysine attacking to the beta-carbon of the amide moiety of HKI-272. Furthermore, reversibility of the covalent binding of HKI-272 to HSA was shown when a gradual release of HKI-272 was observed from protein pellet of HKI-272-treated human plasma after resuspension in phosphate buffer, pH 7.4, at 37 degrees C for 18 h.


Assuntos
Química Farmacêutica/métodos , Quinolinas/sangue , Albumina Sérica/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Radioisótopos de Carbono/sangue , Humanos , Mapeamento de Peptídeos/métodos , Peptídeos/metabolismo , Ensaio Radioligante/métodos
13.
Target Oncol ; 15(2): 231-240, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32222953

RESUMO

BACKGROUND: DNA methyltransferase inhibitors (DNMTis) improve survival for patients with myelodysplastic syndromes (MDS) and those with acute myeloid leukemia (AML) unable to receive standard cytotoxic chemotherapy and are, accordingly, the backbone of standard-of-care treatment for these conditions. Standard regimens with DNMTIs, decitabine (DEC) or azacitidine (AZA) include daily subcutaneous (s.c.) or intravenous (i.v.) administration for 5-7 consecutive days. Attempts to provide the therapy orally have been limited given rapid clearance of the agents by the enzyme cytidine deaminase (CDA), which is ubiquitous in the gut and liver as part of first-pass metabolism. Recently, cedazuridine (CDZ), an oral inhibitor of CDA, was successfully combined with DEC to approximate the pharmacokinetics of i.v. DEC in patients. OBJECTIVE: To determine if an oral dosing strategy might be feasible in the clinic with AZA, we attempted to increase the bioavailability of oral AZA through the use of CDZ, in a murine model. METHODS: Following pharmacokinetic and pharmacodynamic assessment of oral AZA dosed with CDZ in murine and monkey models, we tested this regimen in vivo with a human cell line-derived xenograft transplantation experiment (CDX). Following this we combined the regimen with venetoclax (VEN) to test the efficacy of an all-oral regimen in a patient-derived xenograft (PDX) model. RESULTS: Parenteral AZA and oral AZA + CDZ exhibited similar pharmacokinetic profiles, and efficacy against human AML cells. Tumor regression was seen with AZA + CDZ in MOLM-13 CDX and PDX models. CONCLUSIONS: We conclude that oral AZA when combined with CDZ achieves successful tumor regression in both CDX and PDX models. Furthermore, the combination of AZA + CDZ with VEN in a PDX model emulated responses seen with VEN + AZA in the clinic, implying a potential all-oral VEN-based therapy opportunity in myeloid diseases.


Assuntos
Azacitidina/uso terapêutico , Uridina/análogos & derivados , Administração Oral , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Modelos Animais de Doenças , Feminino , Haplorrinos , Humanos , Infusões Parenterais , Camundongos , Resultado do Tratamento , Uridina/uso terapêutico
14.
Clin Cancer Res ; 26(12): 2819-2826, 2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-31900279

RESUMO

PURPOSE: This first-in-human, phase I study evaluated ASTX660, an oral, small-molecule antagonist of cellular/X-linked inhibitors of apoptosis proteins in patients with advanced solid tumors or lymphoma. PATIENTS AND METHODS: ASTX660 was administered orally once daily on a 7-day-on/7-day-off schedule in a 28-day cycle. Dose escalation followed a standard 3+3 design to determine the MTD and recommended phase II dose (RP2D). Dose expansion was conducted at the RP2D. RESULTS: Forty-five patients received ASTX660 (range 15-270 mg/day). Dose-limiting toxicity of grade 3 increased lipase with or without increased amylase occurred in 3 patients at 270 mg/day and 1 patient at 210 mg/day. The MTD was determined to be 210 mg/day and the RP2D 180 mg/day. Common treatment-related adverse events included fatigue (33%), vomiting (31%), and nausea (27%). Grade ≥3 treatment-related adverse events occurred in 7 patients, most commonly anemia (13%), increased lipase (11%), and lymphopenia (9%). ASTX660 was rapidly absorbed, with maximum concentration achieved at approximately 0.5-1.0 hour. An approximately 2-fold accumulation in AUC exposures was observed on day 7 versus 1. ASTX660 suppressed cellular inhibitor of apoptosis protein-1 in peripheral blood mononuclear cells, which was maintained into the second cycle beyond the off-therapy week at the 180-mg/day RP2D and above. Clinical activity was seen in a patient with cutaneous T-cell lymphoma. CONCLUSIONS: ASTX660 demonstrated a manageable safety profile and exhibited evidence of pharmacodynamic and preliminary clinical activity at the 180-mg/day RP2D. The phase II part of the study is ongoing.


Assuntos
Proteínas Reguladoras de Apoptose/antagonistas & inibidores , Linfoma/tratamento farmacológico , Morfolinas/uso terapêutico , Neoplasias/tratamento farmacológico , Piperazinas/uso terapêutico , Pirróis/uso terapêutico , Adulto , Idoso , Feminino , Seguimentos , Humanos , Linfoma/patologia , Masculino , Dose Máxima Tolerável , Pessoa de Meia-Idade , Neoplasias/patologia , Prognóstico
15.
Clin Cancer Res ; 26(5): 1009-1016, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31831561

RESUMO

PURPOSE: Platinum resistance in ovarian cancer is associated with epigenetic modifications. Hypomethylating agents (HMA) have been studied as carboplatin resensitizing agents in ovarian cancer. This randomized phase II trial compared guadecitabine, a second-generation HMA, and carboplatin (G+C) against second-line chemotherapy in women with measurable or detectable platinum-resistant ovarian cancer. PATIENTS AND METHODS: Patients received either G+C (guadecitabine 30 mg/m2 s.c. once-daily for 5 days and carboplatin) or treatment of choice (TC; topotecan, pegylated liposomal doxorubicin, paclitaxel, or gemcitabine) in 28-day cycles until progression or unacceptable toxicity. The primary endpoint was progression-free survival (PFS); secondary endpoints were RECIST v1.1 and CA-125 response rate, 6-month PFS, and overall survival (OS). RESULTS: Of 100 patients treated, 51 received G+C and 49 received TC, of which 27 crossed over to G+C. The study did not meet its primary endpoint as the median PFS was not statistically different between arms (16.3 weeks vs. 9.1 weeks in the G+C and TC groups, respectively; P = 0.07). However, the 6-month PFS rate was significantly higher in the G+C group (37% vs. 11% in TC group; P = 0.003). The incidence of grade 3 or higher toxicity was similar in G+C and TC groups (51% and 49%, respectively), with neutropenia and leukopenia being more frequent in the G+C group. CONCLUSIONS: Although this trial did not show superiority for PFS of G+C versus TC, the 6-month PFS increased in G+C treated patients. Further refinement of this strategy should focus on identification of predictive markers for patient selection.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Epigênese Genética/efeitos dos fármacos , Recidiva Local de Neoplasia/tratamento farmacológico , Neoplasias Ovarianas/tratamento farmacológico , Adulto , Idoso , Idoso de 80 Anos ou mais , Azacitidina/administração & dosagem , Azacitidina/análogos & derivados , Carboplatina/administração & dosagem , Desoxicitidina/administração & dosagem , Desoxicitidina/análogos & derivados , Doxorrubicina/administração & dosagem , Doxorrubicina/análogos & derivados , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Humanos , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/mortalidade , Recidiva Local de Neoplasia/patologia , Neoplasias Ovarianas/mortalidade , Neoplasias Ovarianas/patologia , Paclitaxel/administração & dosagem , Segurança do Paciente , Polietilenoglicóis/administração & dosagem , Taxa de Sobrevida , Topotecan/administração & dosagem , Resultado do Tratamento , Gencitabina
16.
J Pharmacol Exp Ther ; 331(2): 598-608, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19671883

RESUMO

The presenilin containing gamma-secretase complex is responsible for the regulated intramembraneous proteolysis of the amyloid precursor protein (APP), the Notch receptor, and a multitude of other substrates. gamma-Secretase catalyzes the final step in the generation of Abeta(40) and Abeta(42) peptides from APP. Amyloid beta-peptides (Abeta peptides) aggregate to form neurotoxic oligomers, senile plaques, and congophilic angiopathy, some of the cardinal pathologies associated with Alzheimer's disease. Although inhibition of this protease acting on APP may result in potentially therapeutic reductions of neurotoxic Abeta peptides, nonselective inhibition of the enzyme may cause severe adverse events as a result of impaired Notch receptor processing. Here, we report the preclinical pharmacological profile of GSI-953 (begacestat), a novel thiophene sulfonamide gamma-secretase inhibitor (GSI) that selectively inhibits cleavage of APP over Notch. This GSI inhibits Abeta production with low nanomolar potency in cellular and cell-free assays of gamma-secretase function, and displaces a tritiated analog of GSI-953 from enriched gamma-secretase enzyme complexes with similar potency. Cellular assays of Notch cleavage reveal that this compound is approximately 16-fold selective for the inhibition of APP cleavage. In the human APP-overexpressing Tg2576 transgenic mouse, treatment with this orally active compound results in a robust reduction in brain, plasma, and cerebral spinal fluid Abeta levels, and a reversal of contextual fear-conditioning deficits that are correlated with Abeta load. In healthy human volunteers, oral administration of a single dose of GSI-953 produces dose-dependent changes in plasma Abeta levels, confirming pharmacodynamic activity of GSI-953 in humans.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Sulfonamidas/farmacologia , Tiofenos/farmacologia , Adolescente , Adulto , Secretases da Proteína Precursora do Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Ligação Competitiva , Células CHO , Linhagem Celular , Cricetinae , Cricetulus , Cães , Inibidores Enzimáticos/farmacocinética , Inibidores Enzimáticos/toxicidade , Medo/psicologia , Feminino , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Ratos , Ratos Sprague-Dawley , Receptores Notch/fisiologia , Transdução de Sinais/efeitos dos fármacos , Sulfonamidas/farmacocinética , Sulfonamidas/toxicidade , Tiofenos/farmacocinética , Tiofenos/toxicidade , Adulto Jovem
17.
Bioorg Med Chem Lett ; 19(3): 926-9, 2009 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-19097890

RESUMO

Accumulation of beta-amyloid (Abeta), produced by the proteolytic cleavage of amyloid precursor protein (APP) by beta- and gamma-secretase, is widely believed to be associated with Alzheimer's disease (AD). Research around the high-throughput screening hit (S)-4-chlorophenylsulfonyl isoleucinol led to the identification of the Notch-1-sparing (9.5-fold) gamma-secretase inhibitor (S)-N-(5-chlorothiophene-2-sulfonyl)-beta,beta-diethylalaninol 7.b.2 (Abeta(40/42) EC(50)=28 nM), which is efficacious in reduction of Abeta production in vivo.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Isoleucina/análogos & derivados , Receptor Notch1/metabolismo , Álcoois , Secretases da Proteína Precursora do Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/química , Animais , Desenho de Fármacos , Humanos , Isoleucina/química , Modelos Químicos , Propanolaminas/química , Sulfonamidas/química
18.
J Pharm Biomed Anal ; 164: 16-26, 2019 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-30366147

RESUMO

DNA hypermethylation is an epigenetic event that is commonly found in malignant cells and is used as a therapeutic target for ß-decitabine (ß-DEC) containing hypomethylating agents (eg Dacogen® and guadecitabine). ß-DEC requires cellular uptake and intracellular metabolic activation to ß-DEC triphosphate before it can get incorporated into the DNA. Once incorporated in the DNA, ß-DEC can exert its hypomethylating effect by trapping DNA methyltransferases (DNMTs), resulting in reduced 5-methyl-2'-deoxycytidine (5mdC) DNA content. ß-DEC DNA incorporation and its effect on DNA methylation, however, have not yet been investigated in patients treated with ß-DEC containing therapies. For this reason, we developed and validated a sensitive and selective LC-MS/MS method to determine total intracellular ß-DEC nucleotide (ß-DEC-XP) concentrations, as well as to quantify ß-DEC and 5mdC DNA incorporation relative to 2'-deoxycytidine (2dC) DNA content. The assay was successfully validated according to FDA and EMA guidelines in a linear range from 0.5 to 100 ng/mL (ß-DEC), 50 to 10,000 ng/mL (2dC), and 5 to 1,000 ng/mL (5mdC) in peripheral blood mononuclear cell (PBMC) lysate. An additional calibrator at a concentration of 0.1 ng/mL was added for ß-DEC to serve as a limit of detection (LOD). Clinical applicability of the method was demonstrated in patients treated with guadecitabine. Our data support the use of the validated LC-MS/MS method to further explore the intracellular pharmacokinetics in patients treated with ß-DEC containing hypomethylating agents.


Assuntos
Antimetabólitos Antineoplásicos/farmacocinética , Azacitidina/análogos & derivados , DNA/química , Decitabina/análise , Desoxicitidina/análogos & derivados , Adulto , Antimetabólitos Antineoplásicos/química , Antimetabólitos Antineoplásicos/uso terapêutico , Azacitidina/química , Azacitidina/farmacocinética , Azacitidina/uso terapêutico , Cromatografia Líquida de Alta Pressão/instrumentação , Cromatografia Líquida de Alta Pressão/métodos , Ensaios Clínicos Fase II como Assunto , DNA/metabolismo , Metilação de DNA/efeitos dos fármacos , Decitabina/química , Desoxicitidina/análise , Desoxicitidina/química , Humanos , Leucócitos Mononucleares , Limite de Detecção , Neoplasias/sangue , Neoplasias/tratamento farmacológico , Ensaios Clínicos Controlados Aleatórios como Assunto , Espectrometria de Massas em Tandem/instrumentação , Espectrometria de Massas em Tandem/métodos
19.
Artigo em Inglês | MEDLINE | ID: mdl-30754019

RESUMO

Guadecitabine (SGI-110), a dinucleotide of ߭decitabine and deoxyguanosine, is currently being evaluated in phase II/III clinical trials for the treatment of hematological malignancies and solid tumors. This article describes the development and validation of bioanalytical assays to quantify guadecitabine and its active metabolite ߭decitabine in human plasma, whole blood and urine using high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). Since ߭decitabine is rapidly metabolized further by cytidine deaminase, plasma and whole blood samples were kept on ice-water after collection and stabilized with tetrahydrouridine (THU) directly upon sample collection. Sample preparation consisted of protein precipitation for plasma and whole blood and dilution for urine samples and was further optimized for each matrix and analyte separately. Final extracts were injected onto a C6-phenyl column for guadecitabine analysis, or a Nova-Pak Silica column for ߭decitabine analysis. Gradient elution was applied for both analytes using the same eluents for each assay and detection was performed on triple quadrupole mass spectrometers operating in the positive ion mode (Sciex QTRAP 5500 and QTRAP 6500). The assay for guadecitabine was linear over a range of 1.0-200 ng/mL (plasma, whole blood) and 10-2000 ng/mL (urine). For ߭decitabine the assay was linear over a range of 0.5-100 ng/mL (plasma, whole blood) and 5-1000 ng/mL (urine). The presented methods were successfully validated according to the latest FDA and EMA guidelines for bioanalytical method validation and applied in a guadecitabine clinical mass balance trial in patients with advanced cancer.


Assuntos
Antineoplásicos/sangue , Azacitidina/análogos & derivados , Cromatografia Líquida/métodos , Decitabina/sangue , Espectrometria de Massas em Tandem/métodos , Antineoplásicos/química , Antineoplásicos/farmacocinética , Antineoplásicos/urina , Azacitidina/sangue , Azacitidina/química , Azacitidina/farmacocinética , Azacitidina/urina , Decitabina/química , Decitabina/farmacocinética , Decitabina/urina , Humanos , Modelos Lineares , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
20.
Clin Cancer Res ; 25(15): 4624-4633, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31113841

RESUMO

PURPOSE: Onalespib is a potent, fragment-derived second-generation HSP90 inhibitor with preclinical activity in castration-resistant prostate cancer (CPRC) models. This phase I/II trial evaluated onalespib in combination with abiraterone acetate (AA) and either prednisone or prednisolone (P) in men with CRPC progressing on AA/P. PATIENTS AND METHODS: Patients with progressing CRPC were randomly assigned to receive 1 of 2 regimens of onalespib combined with AA/P. Onalespib was administered as intravenous infusion starting at 220 mg/m2 once weekly for 3 of 4 weeks (regimen 1); or at 120 mg/m2 on day 1 and day 2 weekly for 3 of 4 weeks (regimen 2). Primary endpoints were response rate and safety. Secondary endpoints included evaluation of androgen receptor (AR) depletion in circulating tumor cells (CTC) and in fresh tumor tissue biopsies. RESULTS: Forty-eight patients were treated with onalespib in combination with AA/P. The most common ≥grade 3 toxicities related to onalespib included diarrhea (21%) and fatigue (13%). Diarrhea was dose limiting at 260 and 160 mg/m2 for regimens 1 and 2, respectively. Transient decreases in CTC counts and AR expression in CTC were observed in both regimens. HSP72 was significantly upregulated following onalespib treatment, but only a modest decrease in AR and GR was shown in paired pre- and posttreatment tumor biopsy samples. No patients showed an objective or PSA response. CONCLUSIONS: Onalespib in combination with AA/P showed mild evidence of some biological effect; however, this effect did not translate into clinical activity, hence further exploration of this combination was not justified.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacocinética , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Acetato de Abiraterona/administração & dosagem , Idoso , Idoso de 80 Anos ou mais , Benzamidas/administração & dosagem , Humanos , Isoindóis/administração & dosagem , Masculino , Pessoa de Meia-Idade , Segurança do Paciente , Prednisolona/administração & dosagem , Neoplasias de Próstata Resistentes à Castração/patologia , Taxa de Sobrevida , Distribuição Tecidual , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA