Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 4495, 2024 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-38402260

RESUMO

Extrapulmonary tuberculosis with a renal involvement can be a manifestation of a disseminated infection that requires therapeutic intervention, particularly with a decrease in efficacy of conventional regimens. In the present study, we investigated the therapeutic potency of mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) in the complex anti-tuberculosis treatment (ATT). A rabbit model of renal tuberculosis (rTB) was constructed by injecting of the standard strain Mycobacterium tuberculosis H37Rv into the cortical layer of the kidney parenchyma. Isolated rabbit MSC-EVs were intravenously administered once as an addition to standard ATT (isoniazid, pyrazinamide, and ethambutol). The therapeutic efficacy was assessed by analyzing changes of blood biochemical biomarkers and levels of anti- and pro-inflammatory cytokines as well as by renal computed tomography with subsequent histological and morphometric examination. The therapeutic effect of therapy with MSC-EVs was shown by ELISA method that confirmed a statistically significant increase of the anti-inflammatory and decrease of pro-inflammatory cytokines as compared to conventional treatment. In addition, there is a positive trend in increase of ALP level, animal weigh, and normalization of ADA activity that can indicate an improvement of kidney state. A significant reduction of the area of specific and interstitial inflammation indicated positive affect of MSC-EVs that suggests a shorter duration of ATT. The number of MSC-EVs proteins (as identified by mass-spectometry analysis) with anti-microbial, anti-inflammatory and immunoregulatory functions reduced the level of the inflammatory response and the severity of kidney damage (further proved by morphometric analysis). In conclusion, MSC-EVs can be a promising tool for the complex treatment of various infectious diseases, in particularly rTB.


Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais , Tuberculose Renal , Animais , Coelhos , Tuberculose Renal/metabolismo , Vesículas Extracelulares/metabolismo , Citocinas/metabolismo , Anti-Inflamatórios/uso terapêutico , Anti-Inflamatórios/metabolismo , Células-Tronco Mesenquimais/metabolismo
2.
Cancer Res Commun ; 4(8): 2025-2044, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39015084

RESUMO

Molecular chaperones, especially 70 kDa heat shock protein, in addition to their intracellular localization in cancer cells, can be exposed on the surface of the plasma membrane. We report that the membrane-associated chaperone mHsp70 of malignant brain tumors is required for high migratory and invasive activity of cancer cells. Live-cell inverted confocal microscopy of tumor samples from adult (n = 23) and pediatric (n = 9) neurooncologic patients showed pronounced protein expression on the membrane, especially in the perifocal zone. Mass spectrometry analysis of lipid rafts isolated from tumor cells confirmed the presence of the protein in the chaperone cluster (including representatives of other families, such as Hsp70, Hsc70, Hsp105, and Hsp90), which in turn, during interactome analysis, was associated with proteins involved in cell migration (e.g., Rac1, RhoC, and myosin-9). The use of small-molecule inhibitors of HSP70 (PES and JG98) led to a substantial decrease in the invasive potential of cells isolated from a tumor sample of patients, which indicates the role of the chaperone in invasion. Moreover, the use of HSP70 inhibitors in animal models of orthotopic brain tumors significantly delayed tumor progression, which was accompanied by an increase in overall survival. Data demonstrate that chaperone inhibitors, particularly JG98, disrupt the function of mHsp70, thereby providing an opportunity to better understand the diverse functions of this protein and offer aid in the development of novel cancer therapies. SIGNIFICANCE: Membrane-bound mHsp70 is required for brain tumor cell migration and invasion and therefore could be employed as a target for anticancer therapies.


Assuntos
Neoplasias Encefálicas , Movimento Celular , Proteínas de Choque Térmico HSP70 , Invasividade Neoplásica , Humanos , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/metabolismo , Movimento Celular/efeitos dos fármacos , Animais , Proteínas de Choque Térmico HSP70/metabolismo , Camundongos , Linhagem Celular Tumoral , Feminino , Membrana Celular/metabolismo , Masculino , Adulto , Microdomínios da Membrana/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA