RESUMO
BACKGROUND: In malaria endemic regions, transmission of Plasmodium falciparum parasites is often seasonal with very low transmission during the dry season and high transmission in the wet season. Parasites survive the dry season within some individuals who experience prolonged carriage of parasites and are thought to 'seed' infection in the next transmission season. METHODS: Dry season carriers and their role in the subsequent transmission season are characterized using a combination of mathematical simulations and data analysis of previously described data from a longitudinal study in Mali of individuals aged 3 months-12 years (n = 579). RESULTS: Simulating the life-history of individuals experiencing repeated exposure to infection predicts that dry season carriage is more likely in the oldest, most exposed and most immune individuals. This hypothesis is supported by the data from Mali, which shows that carriers are significantly older, experience a higher biting rate at the beginning of the transmission season and develop clinical malaria later than non-carriers. Further, since the most exposed individuals in a community are most likely to be dry season carriers, this is predicted to enable a more than twofold faster spread of parasites into the mosquito population at the start of the subsequent wet season. CONCLUSIONS: Carriage of malaria parasites over the months-long dry season in Mali is most likely in the older, more exposed and more immune children. These children may act as super-spreaders facilitating the fast spread of parasites at the beginning of the next transmission season.
Assuntos
Malária Falciparum , Malária , Parasitos , Criança , Animais , Humanos , Malária Falciparum/epidemiologia , Malária Falciparum/parasitologia , Estações do Ano , Estudos Longitudinais , Plasmodium falciparum , Malária/epidemiologiaRESUMO
OBJECTIVES: To analyse the outcomes of COVID-19 vaccination by vaccine type, age group eligibility, vaccination strategy, and population coverage. DESIGN: Epidemiologic modelling to assess the final size of a COVID-19 epidemic in Australia, with vaccination program (Pfizer, AstraZeneca, mixed), vaccination strategy (vulnerable first, transmitters first, untargeted), age group eligibility threshold (5 or 15 years), population coverage, and pre-vaccination effective reproduction number ( Reffv¯ ) for the SARS-CoV-2 Delta variant as factors. MAIN OUTCOME MEASURES: Numbers of SARS-CoV-2 infections; cumulative hospitalisations, deaths, and years of life lost. RESULTS: Assuming Reffv¯ = 5, the current mixed vaccination program (vaccinating people aged 60 or more with the AstraZeneca vaccine and people under 60 with the Pfizer vaccine) will not achieve herd protection unless population vaccination coverage reaches 85% by lowering the vaccination eligibility age to 5 years. At Reffv¯ = 3, the mixed program could achieve herd protection at 60-70% population coverage and without vaccinating 5-15-year-old children. At Reffv¯ = 7, herd protection is unlikely to be achieved with currently available vaccines, but they would still reduce the number of COVID-19-related deaths by 85%. CONCLUSION: Vaccinating vulnerable people first is the optimal policy when population vaccination coverage is low, but vaccinating more socially active people becomes more important as the Reffv¯ declines and vaccination coverage increases. Assuming the most plausible Reffv¯ of 5, vaccinating more than 85% of the population, including children, would be needed to achieve herd protection. Even without herd protection, vaccines are highly effective in reducing the number of deaths.
Assuntos
Vacinas contra COVID-19/imunologia , COVID-19/prevenção & controle , Imunidade Coletiva , Vacinação em Massa/organização & administração , SARS-CoV-2/patogenicidade , Adolescente , Adulto , Fatores Etários , Austrália/epidemiologia , Vacina BNT162 , COVID-19/epidemiologia , COVID-19/imunologia , COVID-19/virologia , Vacinas contra COVID-19/administração & dosagem , Criança , Pré-Escolar , Simulação por Computador , Humanos , Imunogenicidade da Vacina , Vacinação em Massa/estatística & dados numéricos , Pessoa de Meia-Idade , Modelos Imunológicos , SARS-CoV-2/genética , SARS-CoV-2/imunologia , Cobertura Vacinal/organização & administração , Cobertura Vacinal/estatística & dados numéricos , Adulto JovemRESUMO
Mathematical modelling has played a pivotal role in understanding the epidemiology of and guiding public health responses to the ongoing coronavirus disease of 2019 (COVID-19) pandemic. Here, we review the role of epidemiological models in understanding evolving epidemic characteristics, including the effects of vaccination and Variants of Concern (VoC). We highlight ways in which models continue to provide important insights, including (1) calculating the herd immunity threshold and evaluating its limitations; (2) verifying that nascent vaccines can prevent severe disease, infection, and transmission but may be less efficacious against VoC; (3) determining optimal vaccine allocation strategies under efficacy and supply constraints; and (4) determining that VoC are more transmissible and lethal than previously circulating strains, and that immune escape may jeopardize vaccine-induced herd immunity. Finally, we explore how models can help us anticipate and prepare for future stages of COVID-19 epidemiology (and that of other diseases) through forecasts and scenario projections, given current uncertainties and data limitations.
Assuntos
Vacinas contra COVID-19/provisão & distribuição , COVID-19/epidemiologia , COVID-19/prevenção & controle , Controle de Doenças Transmissíveis/organização & administração , Pneumonia Viral/epidemiologia , Pneumonia Viral/prevenção & controle , Humanos , Modelos Teóricos , Pandemias/prevenção & controle , Pneumonia Viral/virologia , SARS-CoV-2RESUMO
Vector control methods are considered effective in averting dengue transmission. However, several factors may modify their impact. Of these controls, chemical methods, in the long run, may increase mosquitoes' resistance to chemicides, thereby decreasing control efficacy. The biological methods, which may be self-sustaining and very effective, could be hampered by seasonality or heatwaves (resulting in, e.g., loss of Wolbachia infection). The environmental methods that could be more effective than the chemical methods are under-investigated. In this study, a systematic review is conducted to explore the present understanding of the effectiveness of vector control approaches via dengue transmission models.
Assuntos
Aedes , Dengue , Wolbachia , Animais , Humanos , Dengue/epidemiologia , Dengue/prevenção & controle , Mosquitos Vetores , Modelos TeóricosRESUMO
From October 2014 to February 2019, local authorities in Townsville, North Queensland, Australia continually introduced Wolbachia-infected mosquitoes to control seasonal outbreaks of dengue infection. In this study, we develop a mathematical modelling framework to estimate the effectiveness of this intervention as well as the relative dengue transmission rates of Wolbachia-infected and wild-type mosquitoes. We find that the transmission rate of Wolbachia-infected mosquitoes is reduced approximately by a factor of 20 relative to the uninfected wild-type population. In addition, the Townsville Wolbachia release program led to a 65% reduction in predicted dengue incidence during the release period and over 95% reduction in the 24 months that followed. Finally, to investigate the potential impact of other Wolbachia release programs, we use our estimates of relative transmissibility to calculate the relationship between the reproductive number of dengue and the proportion of Wolbachia-infected mosquitoes in the vector population.
Assuntos
Culicidae , Dengue , Wolbachia , Animais , Mosquitos Vetores , Austrália/epidemiologia , Queensland/epidemiologia , Dengue/epidemiologia , Dengue/prevenção & controleRESUMO
Wolbachia intracellular bacteria successfully reduce the transmissibility of arthropod-borne viruses (arboviruses) when introduced into virus-carrying vectors such as mosquitoes. Despite the progress made by introducing Wolbachia bacteria into the Aedes aegypti wild-type population to control arboviral infections, reports suggest that heat-induced loss-of-Wolbachia-infection as a result of climate change may reverse these gains. Novel, supplemental Wolbachia strains that are more resilient to increased temperatures may circumvent these concerns, and could potentially act synergistically with existing variants. In this article, we model the ecological dynamics among three distinct mosquito (sub)populations: a wild-type population free of any Wolbachia infection; an invading population infected with a particular Wolbachia strain; and a second invading population infected with a distinct Wolbachia strain from that of the first invader. We explore how the range of possible characteristics of each Wolbachia strain impacts mosquito prevalence. Further, we analyse the differential system governing the mosquito populations and the Wolbachia infection dynamics by computing the full set of basic and invasive reproduction numbers and use these to establish stability of identified equilibria. Our results show that releasing mosquitoes with two different strains of Wolbachia did not increase their prevalence, compared with a single-strain Wolbachia-infected mosquito introduction and only delayed Wolbachia dominance.
Assuntos
Aedes , Wolbachia , Animais , Mosquitos Vetores , Regulação da Temperatura Corporal , Mudança ClimáticaRESUMO
Although influenza A virus is endemic in wild waterfowl, domestic poultry, swine, humans, bats, cetaceans, dogs, and horses, there is a paucity of data on the potential role of camels in zoonotic transmission of the virus. To estimate the seroprevalence of the influenza A virus in camel populations, four local government areas of Nigeria that share an international border with the Niger Republic were selected. Blood samples from 184 one-hump camels (dromedaries) were collected and tested for influenza IgG antigen by ELISA. Each camel's demographic variable, such as age, gender, location, production system, and usage, was recorded. The overall seroprevalence rate of influenza virus IgG in this study was 10.33% (95%CI: 6.33-15.66%). In the bivariate model, there was no significant difference in gender, age, site location and production system, except for usage. There was a significantly lower seroprevalence rate among camels used for labour (odds ratio (OR) = 0.34, 95% CI: 0.10-0.97) than those used for meat consumption; however, not after adjusting for other variables in the model. Increase surveillance through early detection, prediction, and risk assessment of pathogens in animal reservoirs and environmental contamination as One Health strategies to reduce potential human spillover is recommended. Molecular epidemiology studies could better elucidate the role of camels in the dynamics of disease transmission pathways.
RESUMO
Arthropod-borne viruses (Arboviruses) continue to generate significant health and economic burdens for people living in endemic regions. Of these viruses, some of the most important (e.g., dengue, Zika, chikungunya, and yellow fever virus), are transmitted mainly by Aedes mosquitoes. Over the years, viral infection control has targeted vector population reduction and inhibition of arboviral replication and transmission. This control includes the vector control methods which are classified into chemical, environmental, and biological methods. Some of these control methods may be largely experimental (both field and laboratory investigations) or widely practised. Perceptively, one of the biological methods of vector control, in particular, Wolbachia-based control, shows a promising control strategy for eradicating Aedes-borne arboviruses. This can either be through the artificial introduction of Wolbachia, a naturally present bacterium that impedes viral growth in mosquitoes into heterologous Aedes aegypti mosquito vectors (vectors that are not natural hosts of Wolbachia) thereby limiting arboviral transmission or via Aedes albopictus mosquitoes, which naturally harbour Wolbachia infection. These strategies are potentially undermined by the tendency of mosquitoes to lose Wolbachia infection in unfavourable weather conditions (e.g., high temperature) and the inhibitory competitive dynamics among co-circulating Wolbachia strains. The main objective of this review was to critically appraise published articles on vector control strategies and specifically highlight the use of Wolbachia-based control to suppress vector population growth or disrupt viral transmission. We retrieved studies on the control strategies for arboviral transmissions via arthropod vectors and discussed the use of Wolbachia control strategies for eradicating arboviral diseases to identify literature gaps that will be instrumental in developing models to estimate the impact of these control strategies and, in essence, the use of different Wolbachia strains and features.
RESUMO
Arboviral infections such as dengue, Zika and chikungunya are fast spreading diseases that pose significant health problems globally. In order to control these infections, an intracellular bacterium called Wolbachia has been introduced into wild-type mosquito populations in the hopes of replacing the vector transmitting agent, Aedes aegypti with one that is incapable of transmission. In this study, we developed a Wolbachia transmission model for the novel wAu strain which possesses several favourable traits (e.g., enhanced viral blockage and maintenance at higher temperature) but not cyctoplasmic incompatibility (CI)-when a Wolbachia-infected male mosquito mates with an uninfected female mosquito, producing no viable offspring. This model describes the competitive dynamics between wAu-Wolbachia-infected and uninfected mosquitoes and the role of imperfect maternal transmission. By analysing the system via computing the basic reproduction number(s) and stability properties, the potential of the wAu strain as a viable strategy to control arboviral infections is established. The results of this work show that enhanced maintenance of Wolbachia infection at higher temperatures can overcome the lack of CI induction to support wAu-Wolbachia infected mosquito invasion. This study will support future arboviral control programs, that rely on the introduction of new Wolbachia variants.