Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Hum Mutat ; 40(8): 1172-1180, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31033086

RESUMO

One of most important factors for messenger RNA (mRNA) transcription is the spliceosomal component U1 small nuclear RNA (snRNA), which recognizes 5' splicing donor sites at specific regions in pre-mRNA. Mutations in these sites disrupt U1 snRNA binding and cause abnormal splicing. In this study, we investigated mutations at splice sites in SLC26A4 (HGNC 8818), one of the major causative genes of hearing loss, which may result in the synthesis of abnormal pendrin, the channel protein encoded by the gene. Seventeen SLC26A4 variants with mutations in the U1 snRNA binding sites were assessed by minigene splicing assays, and 11 were found to result in abnormal splicing. Interestingly, eight of the 11 pathogenic mutations were intronic, suggesting the importance of conserved sequences at the intronic splice site. The application of modified U1 snRNA effectively rescued the abnormal splicing for most of these mutations. Although three were cryptic mutations, they were rescued by cotransfection of modified U1 snRNA and modified antisense oligonucleotides. Our results demonstrate the important role of snRNA in SLC26A4 mutations, suggesting the therapeutic potential of modified U1 snRNA and antisense oligonucleotides for neutralizing the pathogenic effect of the splice-site mutations that may result in hearing loss.


Assuntos
Perda Auditiva Neurossensorial/genética , Oligonucleotídeos Antissenso/farmacologia , RNA Nuclear Pequeno/farmacologia , Transportadores de Sulfato/genética , Processamento Alternativo/efeitos dos fármacos , Sequência de Bases , Sítios de Ligação , Sequência Conservada , Células HeLa , Perda Auditiva Neurossensorial/terapia , Humanos , Íntrons , Mutação , Sítios de Splice de RNA , RNA Nuclear Pequeno/metabolismo , Transportadores de Sulfato/química , Transportadores de Sulfato/metabolismo
2.
Hum Mol Genet ; 23(6): 1591-601, 2014 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-24191262

RESUMO

Methionine sulfoxide reductase B3 (MsrB3) is a protein repair enzyme that specifically reduces methionine-R-sulfoxide to methionine. A recent genetic study showed that the MSRB3 gene is associated with autosomal recessive hearing loss in human deafness DFNB74. However, the precise role of MSRB3 in the auditory system and the pathogenesis of hearing loss have not yet been determined. This work is the first to generate MsrB3 knockout mice to elucidate the possible pathological mechanisms of hearing loss observed in DFNB74 patients. We found that homozygous MsrB3(-/-) mice were profoundly deaf and had largely unaffected vestibular function, whereas heterozygous MsrB3(+/-) mice exhibited normal hearing similar to that of wild-type mice. The MsrB3 protein is expressed in the sensory epithelia of the cochlear and vestibular tissues, beginning at E15.5 and E13.5, respectively. Interestingly, MsrB3 is densely localized at the base of stereocilia on the apical surface of auditory hair cells. MsrB3 deficiency led to progressive degeneration of stereociliary bundles starting at P8, followed by a loss of hair cells, resulting in profound deafness in MsrB3(-/-) mice. The hair cell loss appeared to be mediated by apoptotic cell death, which was measured using TUNEL and caspase 3 immunocytochemistry. Taken together, our data suggest that MsrB3 plays an essential role in maintaining the integrity of hair cells, possibly explaining the pathogenesis of DFNB74 deafness in humans caused by MSRB3 deficiency.


Assuntos
Cóclea/patologia , Perda Auditiva/genética , Perda Auditiva/patologia , Metionina Sulfóxido Redutases/genética , Estereocílios/patologia , Animais , Apoptose , Modelos Animais de Doenças , Regulação da Expressão Gênica no Desenvolvimento , Células Ciliadas Auditivas/patologia , Perda Auditiva/enzimologia , Humanos , Metionina Sulfóxido Redutases/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Estereocílios/metabolismo
3.
Hum Genet ; 135(3): 287-98, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26749107

RESUMO

Gap junctions (GJs) are intercellular channels associated with cell-cell communication. Connexin 26 (Cx26) encoded by the GJB2 gene forms GJs of the inner ear, and mutations of GJB2 cause congenital hearing loss that can be syndromic or non-syndromic. It is difficult to predict pathogenic effects using only genetic analysis. Using ionic and biochemical coupling tests, we evaluated the pathogenic effects of Cx26 variants using computational analyses to predict structural abnormalities. For seven out of ten variants, we predicted the variation would result in a loss of GJ function, whereas the others would completely fail to form GJs. Functional studies demonstrated that, although all variants were able to function normally as hetero-oligomeric GJ channels, six variants (p.E47K, p.E47Q, p.H100L, p.H100Y, p.R127L, and p.M195L) did not function normally as homo-oligomeric GJ channels. Interestingly, GJs composed of the Cx26 variant p.R127H were able to function normally, even as homo-oligomeric GJ channels. This study demonstrates the particular location and property of an amino acid are more important mainly than the domain where they belong in the formation and function of GJ, and will provide information that is useful for the accurate diagnosis of hearing loss.


Assuntos
Conexinas/genética , Junções Comunicantes/metabolismo , Variação Genética , Perda Auditiva/genética , Clonagem Molecular , Conexina 26 , Conexinas/metabolismo , Junções Comunicantes/genética , Regulação da Expressão Gênica , Células HeLa , Perda Auditiva/patologia , Humanos , Mutação , Conformação Proteica , Transfecção
4.
FASEB J ; 29(11): 4473-84, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26183770

RESUMO

The vertebrate skeletal system has various functions, including support, movement, protection, and the production of blood cells. The development of cartilage and bones, the core components of the skeletal system, is mediated by systematic inter- and intracellular communication among multiple signaling pathways in differentiating progenitors and the surrounding tissues. Recently, Pannexin (Panx) 3 has been shown to play important roles in bone development in vitro by mediating multiple signaling pathways, although its roles in vivo have not been explored. In this study, we generated and analyzed Panx3 knockout mice and examined the skeletal phenotypes of panx3 morphant zebrafish. Panx3(-/-) embryos exhibited delays in hypertrophic chondrocyte differentiation and osteoblast differentiation as well as the initiation of mineralization, resulting in shortened long bones in adulthood. The abnormal progression of hypertrophic chondrogenesis appeared to be associated with the sustained proliferation of chondrocytes, which resulted from increased intracellular cAMP levels. Similarly, osteoblast differentiation and mineralization were delayed in panx3 morphant zebrafish. Taken together, our results provide evidence of the crucial roles of Panx3 in vertebrate skeletal development in vivo.


Assuntos
Calcificação Fisiológica/fisiologia , Diferenciação Celular/fisiologia , Condrócitos/metabolismo , Conexinas/metabolismo , Osteoblastos/metabolismo , Peixe-Zebra/embriologia , Animais , Condrócitos/citologia , Conexinas/genética , AMP Cíclico/genética , AMP Cíclico/metabolismo , Camundongos , Camundongos Knockout , Osteoblastos/citologia , Sistemas do Segundo Mensageiro/fisiologia , Peixe-Zebra/genética
5.
Biochim Biophys Acta ; 1832(1): 285-91, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22617145

RESUMO

A number of genes responsible for hearing loss are related to ion recycling and homeostasis in the inner ear. Connexins (Cx26 encoded by GJB2, Cx31 encoded by GJB3 and Cx30 encoded by GJB6) are core components of gap junctions in the inner ear. Gap junctions are intercellular communication channels and important factors that are associated with hearing loss. To date, a molecular genetics study of GJB3 and GJB6 as a causative gene for hearing loss has not been performed in Korea. This study was therefore performed to elucidate the genetic characteristics of Korean patients with nonsyndromic sensorineural hearing loss and to determine the pathological mechanism of hearing loss by analyzing the intercellular communication function of Cx30 and Cx31 variants. Sequencing analysis of the GJB3 and GJB6 genes in our population revealed a total of nine variants, including four novel variants in the two genes. Three of the novel variants (Cx31-p.V27M, Cx31-p.V43M and Cx-30-p.I248V) and two previously reported variants (Cx31-p.V84I and Cx30-p.A40V) were selected for functional studies using a pathogenicity prediction program and assessed for whether the mutations were located in a conserved region of the protein. The results of biochemical and ionic coupling tests showed that both the Cx31-p.V27M and Cx31-p.V84I variants did not function normally when each was expressed as a heterozygote with the wild-type Cx31. This study demonstrated that two variants of Cx31 were pathogenic mutations with deleterious effect. This information will be valuable in understanding the pathogenic role of GJB3 and GJB6 mutations associated with hearing loss.


Assuntos
Conexinas/genética , Variação Genética , Perda Auditiva Neurossensorial/genética , Cálcio/metabolismo , Conexina 26 , Conexina 30 , Conexinas/metabolismo , Perda Auditiva Neurossensorial/metabolismo , Perda Auditiva Neurossensorial/patologia , Humanos , Mutação de Sentido Incorreto
6.
Cells Tissues Organs ; 199(4): 294-300, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25531578

RESUMO

The methionine sulfoxide reductase (Msr) family of proteins is a class of repair enzymes that reduce methionine-S (MsrA) or methionine-R (MsrB) sulfoxide to methionine. Recent studies have reported that mutations in the MSRB3 gene cause autosomal recessive hearing loss in humans, and in mice MsrB3 deficiency leads to profound hearing loss due to hair cell apoptosis and stereocilia degeneration. However, apart from MsrB3, studies on Msr proteins in the inner ear have not yet been reported. In this study, we identified and characterized Msr expression in the cochlea and vestibule. First, we confirmed RNA expression levels of Msr family members in the cochlea and vestibule using reverse transcription PCR and detected Msr family members in both tissues. We also conducted immunohistochemical staining to localize Msr family members within the cochlea and vestibule. In the cochlea, MsrA was detected in supporting cells, spiral ligament, spiral limbus, Reissner's membrane and the spiral ganglion. MsrB1 was specifically expressed in hair cells and the spiral ganglion. MsrB2 was noted in the spiral ganglion, tectorial membrane and stria vascularis. In the vestibule, MsrA and MsrB1 were detected in hair cells and the vestibular ganglion, while MsrB2 was restricted to the vestibular ganglion. In this study, we identified distinct distributions of Msr family members in the organ of Corti and hypothesized that MsrA, MsrB1 and MsrB2 protect proteins in the organ of Corti from oxidative stress.


Assuntos
Orelha Interna/patologia , Perda Auditiva/etiologia , Metionina Sulfóxido Redutases/uso terapêutico , Animais , Humanos , Imuno-Histoquímica , Camundongos , Estresse Oxidativo , Espécies Reativas de Oxigênio
7.
J Nanosci Nanotechnol ; 12(7): 5347-50, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22966569

RESUMO

The leakage current mechanism of Palladium (Pd) germanide Schottky contact on n-type Ge-on-Si substrate is analyzed in depth. The electric field dependent analysis shows that the dominant leakage current mechanism is the Poole-Frenkel emission due to the existence of deep level traps in the depletion region of the Pd germanide/n-type Ge Schottky diode. The analysis of the dependence of leakage current on temperature also shows that the Poole-Frenkel emission and generation current are the dominant components below 100 degrees C and that the Schottky emission related to thermionic emission of majority carriers over a potential barrier is the main cause of this dominance at high temperature region.

8.
J Nanosci Nanotechnol ; 11(7): 5628-32, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22121582

RESUMO

In this paper, a novel Ni silicide with Yb interlayer (Yb/Ni/TiN) on a boron cluster (B18H22) implanted source/drain junction is proposed for the first time, and its thermal stability characteristics are analyzed in depth. The proposed Ni-silicide exhibits a wider RTP temperature window for uniform sheet resistance, surface roughness and better thermal stability than the conventional structure (Ni/TiN). In addition, the cross-sectional profile of the proposed Ni-silicide showed less agglomeration despite the high temperature post-silicidation annealing, and it can be said that the proposed structure was little dependence on the temperature post-silicidation annealing. The improvement of Ni silicide properties is analyzed and found to be due to the formation of the rare earth metal--NiSi (YbNi2Si2), whose peaks were confirmed by XRD. The junction leakage current of the p + -n junction with Yb/Ni/TiN and B18H22 implantation is smaller than that with Ni/TiN by almost one order of magnitude as well as improving the thermal stability of ultra shallow junction.

9.
J Nanosci Nanotechnol ; 11(7): 5633-9, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22121583

RESUMO

The thermal endurance and microstructural evolution of Ni-germanide (NiGe) and Pt-germanide (PtGe) on a Ge-on-Si substrate were compared in this paper. In case of the Ni/TiN structure, the sheet resistance exhibited a stable RTP window of 350 to 600 degrees C, while that of the Pt/TiN structure showed more stable characteristics up to 700 degrees C. Furthermore, after post-germanidation annealing, NiGe exhibited the formation of islands due to the severe agglomeration as well as a prominent grain boundary grooving, which accounts for the sharp increase of the sheet resistance from 550 degrees C, whereas PtGe showed a smooth and continuous surface morphological stability without signs of agglomeration even up to 600 degrees C. Although about two times higher resistivity (31.5 micro ohms-cm) and greater Ge consumption (3.27 nm) were shown, PtGe showed more stable sheet resistance, better surface and interface morphological stability and a wider thermal processing window above 100 degrees C than NiGe. Therefore, PtGe is more suitable for the germanided shallow source/drain for nano-scale Ge MOSFETs than NiGe.

10.
Vet Sci ; 8(2)2021 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-33562192

RESUMO

Wharton's jelly is a well-known mesenchymal stem cell source in many species, including humans. However, there have been no reports confirming the presence of mesenchymal stem cells in Wharton's jelly in cats. The purpose of this study was to isolate mesenchymal stem cells (MSCs) from the Wharton's jelly of cats and to characterize stem cells. In this study, feline Wharton's jelly-derived mesenchymal stem cells (fWJ-MSCs) were isolated and successfully cultured. fWJ-MSCs were maintained and the proliferative potential was measured by cumulative population doubling level (CPDL) test, scratch test, and colony forming unit (CFU) test. Stem cell marker, karyotyping and immunophenotyping analysis by flow cytometry showed that fWJ-MSCs possessed characteristic mesenchymal stem cell markers. To confirm the differentiation potential, we performed osteogenic, adipogenic and chondrogenic induction under each differentiation condition. fWJ-MSCs has the ability to differentiate into multiple lineages, including osteogenic, adipogenic and chondrogenic differentiation. This study shows that Wharton's jelly of cat can be a good source of mesenchymal stem cells. In addition, fWJ-MSCs may be useful for stem cell-based therapeutic applications in feline medicine.

11.
Asian Spine J ; 13(3): 361-367, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30669827

RESUMO

STUDY DESIGN: Experimental study. PURPOSE: To determine whether epidural fat (EF) tissue contains mesenchymal stem cells (MSC). OVERVIEW OF LITERATURE: Spine surgeons are unaware of the contents of EF tissue and the reason for its presence between the ligamentum flavum and the dura mater; therefore, EF tissues are routinely eliminated during surgical procedures. However, EF removal causes certain postoperative problems, such as post-laminectomy syndrome. We hypothesized that the EF tissue may play a significant supportive role for the neural structures and other nearby conditions. METHODS: EF tissues were obtained from consenting patients (n=3) during posterior decompression surgery of the lumbar spine. The primary cells were isolated and cultured as per previously described methods with some modifications, and the cell morphology and cumulation were examined. Thereafter, reverse transcription-polymerase chain reaction (RT-PCR), a fluorescence-activated cell sorting (FACS) analysis, and differentiation potency for differentiation into osteoblasts, chondroblasts, and adipocytes were investigated to identify whether the cells derived from EF are MSC. RESULTS: The cells from the EF tissue had a fibroblast or neuron-like morphology that persisted until the senescence at p18. MSCspecific genes, such as OCT4, SOX2, KLF4, MYC, and GAPDH were expressed in the RT-PCR study, while MSC-specific surface markers such as CD105, CD90, and CD73 were exhibited in the FACS analysis. The differentiation properties of EF-MSC for differentiation into the three types of cells (osteoblast, chondroblast, and adipocyte) were also confirmed. CONCLUSIONS: Based on the cell culture, FACS analysis, RT-PCR analysis, and differentiation potent outcomes, all the features of the cells corresponded to MSC. This is the first study to identify EF-MSC derived from the EF tissue.

12.
Lab Anim Res ; 35: 11, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32257899

RESUMO

Botulinum-toxin A (BoNT/A) is a widely used not only for cosmetics but also for various experimental purposes including muscle-related research. In this study, we applied BoNT/A to mouse muscle of three different sources to compare and evaluate the biological and pathological response. The three different mouse sources consist of Korl:ICR (Korea FDA source), A:ICR (USA source) and B:ICR (Japan source) which were purchased from each different vendors. To compare the responses of ICR mice with BoNT/A muscle injection, we examined the body weight, hematological and serum biochemistry analysis. Also, we evaluated the muscle change by histopathological analysis and gene expression patterns of muscle-related target by qPCR. The body weight gain was decreased in the BoNT/A-treated group compared with the control group. In clinical pathologic analysis and gene expression patterns, the data showed that the responses in the BoNT/A-treated group were similar compared with the control group. Decreased muscle fiber was observed in BoNT/A-treated group compared with control group, while Korl:ICR showed a little low response with the other mouse sources. In conclusion, our results suggest that three different sources ICR mice (Korl:ICR, A:ICR and B:ICR) have a similar biological and pathological responses in BoNT/A muscle injection.

13.
Acta Pharm ; 67(2): 257-264, 2017 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-28590914

RESUMO

The main aim of the current research was to study the effect of porphyra-334, one of mycosporine-like amino acids (MAAs), well known as UV-absorbing compounds, on UVinduced apoptosis in human immortalized keratinocyte (HaCaT) cells. Due to their UV-screening capacity and ability to prevent UV-induced DNA damage, MAAs have recently attracted considerable attention in both industry and research in pharmacology. Herein, human HaCaT cells were used to determine the biological activities of porphyra- 334 by various in vitro assays, including proliferation, apoptosis and Western blot assays. The proliferation rate of UV-irradiated HaCaT cells was significantly decreased compared to the control group. Pretreatment with porphyra- 334 markedly attenuated the inhibitory effect of UV and induced a dramatic decrease in the apoptotic rate. Expression of active caspase-3 protein was increased in response to UV irradiation, while caspase-3 levels were similar between cells treated with porphyra-334 and the non-irradiated control group. Taken together, our data suggest that porphyra-334 inhibits UV-induced apoptosis in HaCaT cells through attenuation of the caspase pathway.


Assuntos
Apoptose , Cicloexanonas/farmacologia , Glicina/análogos & derivados , Queratinócitos/efeitos dos fármacos , Raios Ultravioleta , Caspase 3/metabolismo , Linhagem Celular , Glicina/farmacologia , Humanos , Queratinócitos/efeitos da radiação
14.
Int J Pediatr Otorhinolaryngol ; 96: 59-64, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28390615

RESUMO

Cisplatin (cis-diaminedichloridoplatinum(II), cis-[PtCl2(NH3)2]) is an effective chemotherapeutic agent in the treatment of several types of malignant solid tumors but its clinical use is associated with ototoxicity. Several studies have investigated the effect of antioxidants on cisplatin-induced ototoxicity in mice. The triazole KPR-A020 has been shown to play a protective role against mitochondrial dysfunction by reducing the production of mitochondrial reactive oxygen species (ROS). The effect of KPR-A020 on cisplatin-induced ototoxicity was examined using cultures of cochlear explants. Healthy mice were randomly divided into 4 groups: control, treated with cisplatin alone (CP), treated with cisplatin and KPR-A020 (CP + KPR-A020), and treated with KPR-A020 alone (KPR-A020). The cochlear explants were harvested for histological and immunohistochemical examinations. Biochemical analyses of the explants revealed that pre-treatment with KPR-A020 prevented an increase in mitochondrial ROS levels. Moreover, the CP + KPR-A020 group showed better hair cell survival than the CP group. Immunohistochemical examinations of cochlear explants stained with anti-caspase-3 revealed greater immunopositivity in the CP group. The CP + KPR-A020 group showed significantly less immunopositivity than the CP group (P < 0.05). Thus, it appears that KPR-A020 protects hair cells in the organ of Corti from cisplatin-induced toxicity by decreasing the production of mitochondrial ROS. The results of this study suggest that KPR-A020 can be used as an antioxidant and antiapoptotic agent to prevent hearing loss caused by cisplatin induced-oxidative stress.


Assuntos
Antineoplásicos/efeitos adversos , Antioxidantes/farmacologia , Cisplatino/efeitos adversos , Cóclea/efeitos dos fármacos , Perda Auditiva/induzido quimicamente , Triazóis/farmacologia , Animais , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Perda Auditiva/prevenção & controle , Imuno-Histoquímica , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
15.
Toxicol Lett ; 245: 78-85, 2016 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-26778349

RESUMO

Amikacin is a semi-synthetic aminoglycoside widely used to treat infections caused by gentamicin-resistant gram-negative organisms and nontuberculous mycobacteria. However, the use of this agent often results in ototoxicity due to the overproduction of reactive oxygen species (ROS). Galangin, a natural flavonoid, has been shown to play a protective role against mitochondrial dysfunction by reducing mitochondrial ROS production. In this study, the effect of galangin on amikacin-induced ototoxicity was examined using cultures of cochlear explants. Immunofluorescent staining showed that treatment of inner hair cells (IHCs) and outer hair cells (OHCs) with galangin significantly decreased damage induced by amikacin. Moreover, pretreatment with galangin resulted in decreased amikacin-provoked increase in ROS production in both types of hair cells by MitoSOX-red staining. Attenuation of apoptotic cell death was assessed immunohistochemically using active caspase-3 antibody and with terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay, compared to explants exposed to amikacin alone (P<0.05). These results indicate that galangin protects hair cells in the organ of Corti from amikacin-induced toxicity by reducing the production of mitochondrial ROS. The results of this study suggest that galangin can potentially be used as an antioxidant and antiapoptotic agent to prevent hearing loss caused by aminoglycoside induced-oxidative stress.


Assuntos
Aminoglicosídeos , Antioxidantes/farmacologia , Cóclea/metabolismo , Flavonoides/farmacologia , Transtornos da Audição/induzido quimicamente , Transtornos da Audição/prevenção & controle , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Cóclea/efeitos dos fármacos , Células Ciliadas Auditivas Internas/efeitos dos fármacos , Células Ciliadas Auditivas Externas/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Mitocôndrias/efeitos dos fármacos , Técnicas de Cultura de Órgãos , Órgão Espiral/efeitos dos fármacos
16.
Gene ; 591(1): 177-182, 2016 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-27393652

RESUMO

BACKGROUND: Myosin is a key protein involved in regulating the shape and motility of cells. The MYH9 and MYH14 genes, which encode non-muscle myosin heavy chain IIA (NMMHC II-A) and IIC (NMMHC II-C), respectively, are expressed in the inner ear. These myosin genes are known to be associated with autosomal dominant non-syndromic hearing loss (ADNSHL); however, genetic studies in patients with ADNSHL in Korea have rarely been reported. METHODS: We analyzed the MYH9 and MYH14 genes in 75 Korean patients with ADNSHL. RESULTS: We identified 4 possible pathogenic variants: a novel variant p.F1303L and 2 previously reported variants (p.R1730C and p.R1785C) in the MYH9 gene, and a novel variant p.A1868T in the MYH14 gene. All the variants were located in the myosin tail domain, which is essential for the interaction of myosin with actin. These variants were predicted to be possibly pathogenic by functional prediction tools and were absent in 100 unrelated normal controls. CONCLUSION: These results suggest that all the variants identified in this study have a strong potential to affect the structural stability and/or function of non-muscle myosin in the inner ear, which might lead to ADNSHL. This study establishes the link between the genotype and development of ADNSHL and contributes to the establishment of Korean database for hereditary hearing loss.


Assuntos
Estudos de Associação Genética , Predisposição Genética para Doença , Perda Auditiva Neurossensorial/genética , Cadeias Pesadas de Miosina/genética , Sequência de Aminoácidos , Sequência de Bases , Análise Mutacional de DNA , Feminino , Humanos , Masculino , Mutação de Sentido Incorreto/genética , Cadeias Pesadas de Miosina/química , Linhagem , República da Coreia
17.
Antioxid Redox Signal ; 24(11): 590-602, 2016 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-26649646

RESUMO

AIMS: Methionine sulfoxide reductase B3 (MsrB3), which stereospecifically repairs methionine-R-sulfoxide, is an important Msr protein that is associated with auditory function in mammals. MsrB3 deficiency leads to profound congenital hearing loss due to the degeneration of stereociliary bundles and the apoptotic death of cochlear hair cells. In this study, we investigated a fundamental treatment strategy in an MsrB3 deficiency mouse model and confirmed the biological significance of MsrB3 in the inner ear using MsrB3 knockout (MsrB3(-/-)) mice. RESULTS: We delivered a recombinant adeno-associated virus encoding the MsrB3 gene directly into the otocyst at embryonic day 12.5 using a transuterine approach. We observed hearing recovery in the treated ears of MsrB3(-/-) mice at postnatal day 28, and we confirmed MsrB3 mRNA and protein expression in cochlear extracts. Additionally, we demonstrated that the morphology of the stereociliary bundles in the rescued ears of MsrB3(-/-) mice was similar to those in MsrB3(+/+) mice. INNOVATION: To our knowledge, this is the first study to demonstrate functional and morphological rescue of the hair cells of the inner ear in the MsrB3 deficiency mouse model of congenital genetic sensorineural hearing loss using an in utero, virus-mediated gene therapy approach. CONCLUSION: Our results provide insight into the role of MsrB3 in hearing function and bring us one step closer to hearing restoration as a fundamental therapy.


Assuntos
Modelos Animais de Doenças , Terapia Genética , Perda Auditiva Neurossensorial/genética , Perda Auditiva Neurossensorial/terapia , Metionina Sulfóxido Redutases/genética , Metionina Sulfóxido Redutases/metabolismo , Útero/metabolismo , Animais , Feminino , Perda Auditiva Neurossensorial/metabolismo , Metionina Sulfóxido Redutases/deficiência , Camundongos , Camundongos Knockout
18.
Eur J Hum Genet ; 23(5): 639-45, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25138102

RESUMO

Hereditary sensorineural hearing loss is an extremely clinical and genetic heterogeneous disorder in humans. Especially, syndromic hearing loss is subdivided by combinations of various phenotypes, and each subtype is related to different genes. We present a new form of progressive hearing loss with migraine found to be associated with a variant in the ATP1A2 gene. The ATP1A2 gene has been reported as the major genetic cause of familial migraine by several previous studies. A Korean family presenting progressive hearing loss with migraine was ascertained. The affected members did not show any aura or other neurologic symptoms during migraine attacks, indicating on a novel phenotype of syndromic hearing loss. To identify the causative gene, linkage analysis and whole-exome sequencing were performed. A novel missense variant, c.571G>A (p.(Val191Met)), was identified in the ATP1A2 gene that showed co-segregation with the phenotype in the family. In silico studies suggest that this variant causes a change in hydrophobic interactions and thereby slightly destabilize the A-domain of Na(+)/K(+)-ATPase. However, functional studies failed to show any effect of the p.(Val191Met) substitution on the catalytic rate of this enzyme. We describe a new phenotype of progressive hearing loss with migraine associated with a variant in the ATP1A2 gene. This study suggests that a variant in Na(+)/K(+)-ATPase can be involved in both migraine and hearing loss.


Assuntos
Perda Auditiva Neurossensorial/diagnóstico , Perda Auditiva Neurossensorial/genética , Transtornos de Enxaqueca/etiologia , Mutação de Sentido Incorreto , Fenótipo , ATPase Trocadora de Sódio-Potássio/genética , Adulto , Sequência de Aminoácidos , Sequência de Bases , Análise Mutacional de DNA , Progressão da Doença , Exoma , Genes Dominantes , Ligação Genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Escore Lod , Masculino , Transtornos de Enxaqueca/diagnóstico , Modelos Moleculares , Dados de Sequência Molecular , Linhagem , Conformação Proteica , Alinhamento de Sequência
19.
Open Biol ; 4(7)2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25080041

RESUMO

Mutations in five unconventional myosin genes have been associated with genetic hearing loss (HL). These genes encode the motor proteins myosin IA, IIIA, VI, VIIA and XVA. To date, most mutations in myosin genes have been found in the Caucasian population. In addition, only a few functional studies have been performed on the previously reported myosin mutations. We performed screening and functional studies for mutations in the MYO1A and MYO6 genes in Korean cases of autosomal dominant non-syndromic HL. We identified four novel heterozygous mutations in MYO6. Three mutations (p.R825X, p.R991X and Q918fsX941) produce a premature truncation of the myosin VI protein. Another mutation, p.R205Q, was associated with diminished actin-activated ATPase activity and actin gliding velocity of myosin VI in an in vitro analysis. This finding is consistent with the results of protein modelling studies and corroborates the pathogenicity of this mutation in the MYO6 gene. One missense variant, p.R544W, was found in the MYO1A gene, and in silico analysis suggested that this variant has deleterious effects on protein function. This finding is consistent with the results of protein modelling studies and corroborates the pathogenic effect of this mutation in the MYO6 gene.


Assuntos
Perda Auditiva/genética , Mutação , Cadeias Pesadas de Miosina/genética , Miosina Tipo I/genética , Actinas/metabolismo , Adenosina Trifosfatases/metabolismo , Sequência de Aminoácidos , Feminino , Humanos , Masculino , Modelos Moleculares , Dados de Sequência Molecular , Mutação de Sentido Incorreto , Cadeias Pesadas de Miosina/análise , Cadeias Pesadas de Miosina/metabolismo , Miosina Tipo I/análise , Miosina Tipo I/metabolismo , Linhagem , Conformação Proteica
20.
Gene ; 522(1): 65-9, 2013 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-23562982

RESUMO

Auditory neuropathy spectrum disorder (ANSD) is caused by dys-synchronous auditory neural response as a result of impairment of the functions of the auditory nerve or inner hair cells, or synapses between inner hair cells and the auditory nerve. To identify a causative gene causing ANSD in the Korean population, we conducted gene screening of the OTOF, DIAPH3, and PJVK genes in 19 unrelated Korean patients with ANSD. A novel nonsense mutation (p.Y1064X) and a known pathogenic mutation (p.R1939Q) of the OTOF gene were identified in a patient as compound heterozygote. Pedigree analysis for these mutations showed co-segregation of mutation genotype and the disease in the family, and it supported that the p.Y1064X might be a novel genetic cause of autosomal recessive ANSD. A novel missense variant p.K1017R (c.3050A>G) in the DIAPH3 gene was also identified in the heterozygous state. In contrast, no mutation was detected in the PJVK gene. These results indicate that no major causative gene has been reported to date in the Korean population and that pathogenic mutations in undiscovered candidate genes may have an effect on ANSD.


Assuntos
Povo Asiático/genética , Transtornos da Audição/genética , Perda Auditiva Central/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Sequência de Aminoácidos , Códon sem Sentido , Éxons , Feminino , Forminas , Predisposição Genética para Doença , Genótipo , Heterozigoto , Humanos , Masculino , Proteínas de Membrana/genética , Dados de Sequência Molecular , Mutação de Sentido Incorreto , Proteínas do Tecido Nervoso/genética , Linhagem , República da Coreia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA