Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 126
Filtrar
2.
Plant Physiol ; 191(1): 463-478, 2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36342216

RESUMO

Integuments form important protective cell layers surrounding the developing ovules in gymno- and angiosperms. Although several genes have been shown to influence the development of integuments, the transcriptional regulatory mechanism is still poorly understood. In this work, we report that the Class II KNOTTED1-LIKE HOMEOBOX (KNOX II) transcription factors KNOTTED1-LIKE HOMEBOX GENE 3 (KNAT3) and KNAT4 regulate integument development in Arabidopsis (Arabidopsis thaliana). KNAT3 and KNAT4 were co-expressed in inflorescences and especially in young developing ovules. The loss-of-function double mutant knat3 knat4 showed an infertility phenotype, in which both inner and outer integuments of the ovule are arrested at an early stage and form an amorphous structure as in the bell1 (bel1) mutant. The expression of chimeric KNAT3- and KNAT4-EAR motif repression domain (SRDX repressors) resulted in severe seed abortion. Protein-protein interaction assays demonstrated that KNAT3 and KNAT4 interact with each other and also with INNER NO OUTER (INO), a key transcription factor required for the outer integument formation. Transcriptome analysis showed that the expression of genes related with integument development is influenced in the knat3 knat4 mutant. The knat3 knat4 mutant also had a lower indole-3-acetic acid (IAA) content, and some auxin signaling pathway genes were downregulated. Moreover, transactivation analysis indicated that KNAT3/4 and INO activate the auxin signaling gene IAA INDUCIBLE 14 (IAA14). Taken together, our study identified KNAT3 and KNAT4 as key factors in integument development in Arabidopsis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Óvulo Vegetal , Ácidos Indolacéticos/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Proteínas Nucleares/metabolismo
3.
J Exp Bot ; 75(1): 241-257, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37824096

RESUMO

TCP13 belongs to a subgroup of TCP transcription factors implicated in the shade avoidance syndrome (SAS), but its exact role remains unclear. Here, we show that TCP13 promotes the SAS-like response by enhancing hypocotyl elongation and suppressing flavonoid biosynthesis as a part of the incoherent feed-forward loop in light signaling. Shade is known to promote the SAS by activating PHYTOCHROME-INTERACTING FACTOR (PIF)-auxin signaling in plants, but we found no evidence in a transcriptome analysis that TCP13 activates PIF-auxin signaling. Instead, TCP13 mimics shade by activating the expression of a subset of shade-inducible and cell elongation-promoting SAUR genes including SAUR19, by direct targeting of their promoters. We also found that TCP13 and PIF4, a molecular proxy for shade, repress the expression of flavonoid biosynthetic genes by directly targeting both shared and distinct sets of biosynthetic gene promoters. Together, our results indicate that TCP13 promotes the SAS-like response by directly targeting a subset of shade-responsive genes without activating the PIF-auxin signaling pathway.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fitocromo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Flavonoides/metabolismo , Regulação da Expressão Gênica de Plantas , Hipocótilo/genética , Hipocótilo/metabolismo , Ácidos Indolacéticos/metabolismo , Luz , Fitocromo/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
4.
Plant Cell ; 33(1): 85-103, 2021 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-33751094

RESUMO

In angiosperms, endosperm development comprises a series of developmental transitions controlled by genetic and epigenetic mechanisms that are initiated after double fertilization. Polycomb repressive complex 2 (PRC2) is a key component of these mechanisms that mediate histone H3 lysine 27 trimethylation (H3K27me3); the action of PRC2 is well described in Arabidopsis thaliana but remains uncertain in cereals. In this study, we demonstrate that mutation of the rice (Oryza sativa) gene EMBRYONIC FLOWER2a (OsEMF2a), encoding a zinc-finger containing component of PRC2, causes an autonomous endosperm phenotype involving proliferation of the central cell nuclei with separate cytoplasmic domains, even in the absence of fertilization. Detailed cytological and transcriptomic analyses revealed that the autonomous endosperm can produce storage compounds, starch granules, and protein bodies specific to the endosperm. These events have not been reported in Arabidopsis. After fertilization, we observed an abnormally delayed developmental transition in the endosperm. Transcriptome and H3K27me3 ChIP-seq analyses using endosperm from the emf2a mutant identified downstream targets of PRC2. These included >100 transcription factor genes such as type-I MADS-box genes, which are likely required for endosperm development. Our results demonstrate that OsEMF2a-containing PRC2 controls endosperm developmental programs before and after fertilization.


Assuntos
Oryza/genética , Proteínas de Plantas/metabolismo , Endosperma/metabolismo , Epigênese Genética/genética , Regulação da Expressão Gênica de Plantas/genética , Mutação/genética , Proteínas de Plantas/genética , Transcriptoma/genética
5.
Proc Natl Acad Sci U S A ; 118(19)2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33963081

RESUMO

Nitrogen (N) is an essential nutrient that affects multiple plant developmental processes, including flowering. As flowering requires resources to develop sink tissues for reproduction, nutrient availability is tightly linked to this process. Low N levels accelerate floral transition; however, the molecular mechanisms underlying this response are not well understood. Here, we identify the FLOWERING BHLH 4 (FBH4) transcription factor as a key regulator of N-responsive flowering in Arabidopsis Low N-induced early flowering is compromised in fbh quadruple mutants. We found that FBH4 is a highly phosphorylated protein and that FBH4 phosphorylation levels decrease under low N conditions. In addition, decreased phosphorylation promotes FBH4 nuclear localization and transcriptional activation of the direct target CONSTANS (CO) and downstream florigen FLOWERING LOCUS T (FT) genes. Moreover, we demonstrate that the evolutionarily conserved cellular fuel sensor SNF1-RELATED KINASE 1 (SnRK1), whose kinase activity is down-regulated under low N conditions, directly phosphorylates FBH4. SnRK1 negatively regulates CO and FT transcript levels under high N conditions. Together, these results reveal a mechanism by which N levels may fine-tune FBH4 nuclear localization by adjusting the phosphorylation state to modulate flowering time. In addition to its role in flowering regulation, we also showed that FBH4 was involved in low N-induced up-regulation of nutrient recycling and remobilization-related gene expression. Thus, our findings provide insight into N-responsive growth phase transitions and optimization of plant fitness under nutrient-limited conditions.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Flores/metabolismo , Nitrogênio/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Núcleo Celular/genética , Núcleo Celular/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Flores/genética , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Fosforilação , Fotoperíodo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Fatores de Tempo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ativação Transcricional/genética
6.
Ecotoxicol Environ Saf ; 272: 116055, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38340597

RESUMO

2-Methyl-1-butanol (2MB) and 3-Methyl-1-butanol (3MB) are microbial volatile organic compounds (VOCs) and found in indoor air. Here, we applied rice as a bioindicator to investigate the effects of these indoor microbial volatile pollutants. A remarkable decrease in germination percentage, shoot and root elongation, as well as lateral root numbers were observed in 3MB. Furthermore, ROS production increased by 2MB and 3MB, suggesting that pentanol isomers could induce cytotoxicity in rice seedlings. The enhancement of peroxidase (POD) and catalase (CAT) activity provided evidence that pentanol isomers activated the enzymatic antioxidant scavenging systems, with a more significant effect observed in 3MB. Furthermore, 3MB induced higher activity levels of glutathione (GSH), oxidized glutathione (GSSG), and the GSH/GSSG ratio in rice compared to the levels induced by 2MB. Additionally, qRT-PCR analysis showed more up-regulation in the expression of glutaredoxins (GRXs), peroxiredoxins (PRXs), thioredoxins (TRXs), and glutathione S-transferases (GSTUs) genes in 3MB. Taking the impacts of pentanol isomers together, the present study suggests that 3MB exhibits more cytotoxic than 2MB, as such has critical effects on germination and the early seedling stage of rice. Our results provide molecular insights into how isomeric indoor microbial volatile pollutants affect plant growth through airborne signals.


Assuntos
Poluentes Ambientais , Oryza , Antioxidantes/metabolismo , Plântula , Oryza/metabolismo , Pentanóis/metabolismo , Pentanóis/farmacologia , 1-Butanol/metabolismo , 1-Butanol/farmacologia , Poluentes Ambientais/metabolismo , Dissulfeto de Glutationa/metabolismo , Estresse Oxidativo , Glutationa/metabolismo , Raízes de Plantas/metabolismo
7.
Plant J ; 111(2): 595-607, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35510416

RESUMO

Arabidopsis possesses approximately 2000 transcription factors (TFs) in its genome. They play pivotal roles in various biological processes but analysis of their function has been hampered by the overlapping nature of their activities. To uncover clues to their function, we generated inducible TF lines using glucocorticoid receptor (GR) fusion techniques in Arabidopsis. These TF-GR lines each express one of 1255 TFs as a fusion with the GR gene. An average 14 lines of T2 transgenic TF-GR lines were generated for each TF to monitor their function. To evaluate these transcription lines, we induced the TF-GR lines of phytochrome-interacting factor 4, which controls photomorphogenesis, with synthetic glucocorticoid dexamethasone. These phytochrome-interacting factor 4-GR lines showed the phenotype described in a previous report. We performed screening of the other TF-GR lines for TFs involved in light signaling under blue and far-red light conditions and identified 13 novel TF candidates. Among these, we found two lines showing higher anthocyanin accumulation under light conditions and we examined the regulating genes. These results indicate that the TF-GR lines can be used to dissect functionally redundant genes in plants and demonstrate that the TF-GR line collection can be used as an effective tool for functional analysis of TFs.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fitocromo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Fitocromo/genética , Plantas Geneticamente Modificadas/metabolismo , Receptores de Glucocorticoides/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
8.
Plant Mol Biol ; 111(1-2): 21-36, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36109466

RESUMO

KEY MESSAGE: Plant-deleterious microbial volatiles activate the transactivation of hypoxia, MAMPs and wound responsive genes in Arabidopsis thaliana. AtMKK1 and AtMKK3 are involved in the plant-deleterious microbial volatiles-induced defense responses. Microbial volatile compounds (mVCs) are a collection of volatile metabolites from microorganisms with biological effects on all living organisms. mVCs function as gaseous modulators of plant growth and plant health. In this study, the defense events induced by plant-deleterious mVCs were investigated. Enterobacter aerogenes VCs lead to growth inhibition and immune responses in Arabidopsis thaliana. E. aerogenes VCs negatively regulate auxin response and transport gene expression in the root tip, as evidenced by decreased expression of DR5::GFP, PIN3::PIN3-GFP and PIN4::PIN4-GFP. Data from transcriptional analysis suggests that E. aerogenes VCs trigger hypoxia response, innate immune responses and metabolic processes. In addition, the transcript levels of the genes involved in the synthetic pathways of antimicrobial metabolites camalexin and coumarin are increased after the E. aerogenes VCs exposure. Moreover, we demonstrate that MKK1 serves as a regulator of camalexin biosynthesis gene expression in response to E. aerogenes VCs, while MKK3 is the regulator of coumarin biosynthesis gene expression. Additionally, MKK1 and MKK3 mediate the E. aerogenes VCs-induced callose deposition. Collectively, these studies provide molecular insights into immune responses by plant-deleterious mVCs.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Indóis/metabolismo , Plantas/metabolismo , Cumarínicos/metabolismo , Regulação da Expressão Gênica de Plantas , Raízes de Plantas/metabolismo
9.
Plant Cell Physiol ; 64(1): 117-123, 2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36264192

RESUMO

Apomixis, defined as the transfer of maternal germplasm to offspring without fertilization, enables the fixation of F1-useful traits, providing advantages in crop breeding. However, most apomictic plants require pollination to produce the endosperm. The endosperm is essential for embryogenesis, and its development is suppressed until fertilization. We show that the expression of a chimeric repressor of the Elongation of Siliques without Pollination 3 (ESP3) gene (Pro35S:ESP3-SRDX) induces ovule enlargement without fertilization in Arabidopsis thaliana. The ESP3 gene encodes a protein similar to the flowering Wageningen homeodomain transcription factor containing a StAR-related lipid transfer domain. However, ESP3 lacks the homeobox-encoding region. Genes related to the cell cycle and sugar metabolism were upregulated in unfertilized Pro35S:ESP3-SRDX ovules similar to those in fertilized seeds, while those related to autophagy were downregulated similar to those in fertilized seeds. Unfertilized Pro35S:ESP3-SRDX ovules partially nourished embryos when only the egg was fertilized, accumulating hexoses without central cell proliferation. ESP3 may regulate nutrient flow during seed development, and ESP3-SRDX could be a useful tool for complete apomixis that does not require pseudo-fertilization.


Assuntos
Arabidopsis , Polinização , Sementes/metabolismo , Endosperma/genética , Reprodução , Arabidopsis/genética , Desenvolvimento Embrionário , Óvulo Vegetal/genética
10.
Nature ; 549(7672): 379-383, 2017 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-28902843

RESUMO

Constituting approximately 10% of flowering plant species, orchids (Orchidaceae) display unique flower morphologies, possess an extraordinary diversity in lifestyle, and have successfully colonized almost every habitat on Earth. Here we report the draft genome sequence of Apostasia shenzhenica, a representative of one of two genera that form a sister lineage to the rest of the Orchidaceae, providing a reference for inferring the genome content and structure of the most recent common ancestor of all extant orchids and improving our understanding of their origins and evolution. In addition, we present transcriptome data for representatives of Vanilloideae, Cypripedioideae and Orchidoideae, and novel third-generation genome data for two species of Epidendroideae, covering all five orchid subfamilies. A. shenzhenica shows clear evidence of a whole-genome duplication, which is shared by all orchids and occurred shortly before their divergence. Comparisons between A. shenzhenica and other orchids and angiosperms also permitted the reconstruction of an ancestral orchid gene toolkit. We identify new gene families, gene family expansions and contractions, and changes within MADS-box gene classes, which control a diverse suite of developmental processes, during orchid evolution. This study sheds new light on the genetic mechanisms underpinning key orchid innovations, including the development of the labellum and gynostemium, pollinia, and seeds without endosperm, as well as the evolution of epiphytism; reveals relationships between the Orchidaceae subfamilies; and helps clarify the evolutionary history of orchids within the angiosperms.


Assuntos
Evolução Molecular , Genoma de Planta/genética , Orchidaceae/genética , Filogenia , Genes de Plantas/genética , Orchidaceae/anatomia & histologia , Orchidaceae/classificação , Transcriptoma
11.
J Exp Zool B Mol Dev Evol ; 336(8): 642-651, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-32638525

RESUMO

Flowering plants (angiosperms) perform a unique double fertilization in which two sperm cells fuse with two female gamete cells in the embryo sac to develop a seed. Furthermore, during land plant evolution, the mode of sexual reproduction has been modified dramatically from motile sperm in the early-diverging land plants, such as mosses and ferns as well as some gymnosperms (Ginkgo and cycads) to nonmotile sperm that are delivered to female gametes by the pollen tube in flowering plants. Recent studies have revealed the cellular dynamics and molecular mechanisms for the complex series of double fertilization processes and elucidated differences and similarities between animals and plants. Here, together with a brief comparison with animals, we review the current understanding of flowering plant zygote dynamics, covering from gamete nuclear migration, karyogamy, and polyspermy block, to zygotic genome activation as well as asymmetrical division of the zygote. Further analyses of the detailed molecular and cellular mechanisms of flowering plant fertilization should shed light on the evolution of the unique sexual reproduction of flowering plants.


Assuntos
Magnoliopsida , Sementes/crescimento & desenvolvimento , Animais , Fertilização , Células Germinativas , Magnoliopsida/embriologia , Zigoto
12.
J Exp Bot ; 72(5): 1795-1808, 2021 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-33258952

RESUMO

Light and high temperature promote plant cell elongation. PHYTOCHROME INTERACTING FACTOR4 (PIF4, a typical basic helix-loop-helix [bHLH] transcriptional activator) and the non-DNA binding atypical HLH inhibitors PHYTOCHROME RAPIDLY REGULATED1 (PAR1) and LONG HYPOCOTYL IN FAR-RED 1 (HFR1) competitively regulate cell elongation in response to light conditions and high temperature. However, the underlying mechanisms have not been fully clarified. Here, we show that in Arabidopsis thaliana, the bHLH transcription factor CRYPTOCHROME-INTERACTING BASIC HELIX-LOOP-HELIX 1 (CIB1) positively regulates cell elongation under the control of PIF4, PAR1, and HFR1. Furthermore, PIF4 directly regulates CIB1 expression by interacting with its promoter, and PAR1 and HFR1 interfere with PIF4 binding to the CIB1 promoter. CIB1 activates genes that function in cell elongation, and PAR1 interferes with the DNA binding activity of CIB1, thus suppressing cell elongation. Hence, two antagonistic HLH/bHLH systems, the PIF4-PAR1/HFR1 and CIB1-PAR1 systems, regulate cell elongation in response to light and high temperature. We thus demonstrate the important role of non-DNA binding small HLH proteins in the transcriptional regulation of cell elongation in plants.


Assuntos
Proteínas de Arabidopsis , Arabidopsis/crescimento & desenvolvimento , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Temperatura Alta , Hipocótilo/crescimento & desenvolvimento , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Regulação da Expressão Gênica de Plantas , Luz
13.
Plant Cell ; 30(4): 925-945, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29622567

RESUMO

Nitrogen (N) is often a limiting nutrient whose availability determines plant growth and productivity. Because its availability is often low and/or not uniform over time and space in nature, plants respond to variations in N availability by altering uptake and recycling mechanisms, but the molecular mechanisms underlying how these responses are regulated are poorly understood. Here, we show that a group of GARP G2-like transcription factors, Arabidopsis thaliana NITRATE-INDUCIBLE, GARP-TYPE TRANSCRIPTIONAL REPRESSOR1/HYPERSENSITIVE TO LOW Pi-ELICITED PRIMARY ROOT SHORTENING1 proteins (NIGT1/HRS1s), are factors that bind to the promoter of the N starvation marker NRT2.4 and repress an array of N starvation-responsive genes under conditions of high N availability. Transient assays and expression analysis demonstrated that NIGT1/HRS1s are transcriptional repressors whose expression is regulated by N availability. We identified target genes of the NIGT1/HRS1s by genome-wide transcriptome analyses and found that they are significantly enriched in N starvation response-related genes, including N acquisition, recycling, remobilization, and signaling genes. Loss of NIGT1/HRS1s resulted in deregulation of N acquisition and accumulation. We propose that NIGT1/HRS1s are major regulators of N starvation responses that play an important role in optimizing N acquisition and utilization under fluctuating N conditions.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Nitrogênio/metabolismo , Fatores de Transcrição/metabolismo , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Transporte Biológico , Biomarcadores/metabolismo , Perfilação da Expressão Gênica , Regiões Promotoras Genéticas/genética , Fatores de Transcrição/genética
14.
Proc Natl Acad Sci U S A ; 115(47): E11178-E11187, 2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30397148

RESUMO

The plant hormone abscisic acid (ABA) is accumulated after drought stress and plays critical roles in the responses to drought stress in plants, such as gene regulation, stomatal closure, seed maturation, and dormancy. Although previous reports revealed detailed molecular roles of ABA in stress responses, the factors that contribute to the drought-stress responses-in particular, regulation of ABA accumulation-remain unclear. The enzyme NINE-CIS-EPOXYCAROTENOID DIOXYGENASE 3 (NCED3) is essential for ABA biosynthesis during drought stress, and the NCED3 gene is highly induced by drought stress. In the present study, we isolated NGATHAs (NGAs) as candidate transcriptional regulators of NCED3 through a screen of a plant library harboring the transcription factors fused to a chimeric repressor domain, SRDX. The NGA proteins were directly bound to a cis-element NGA-binding element (NBE) in the 5' untranslated region (5' UTR) of the NCED3 promoter and were suggested to be transcriptional activators of NCED3 Among the single-knockout mutants of four NGA family genes, we found that the NGATHA1 (NGA1) knockout mutant was drought-stress-sensitive with a decreased expression level of NCED3 during dehydration stress. These results suggested that NGA1 essentially functions as a transcriptional activator of NCED3 among the NGA family proteins. Moreover, the NGA1 protein was degraded under nonstressed conditions, and dehydration stress enhanced the accumulation of NGA1 proteins, even in ABA-deficient mutant plants, indicating that there should be ABA-independent posttranslational regulations. These findings emphasize the regulatory mechanisms of ABA biosynthesis during early drought stress.


Assuntos
Ácido Abscísico/biossíntese , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Dioxigenases/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética , Fatores de Transcrição/metabolismo , Regiões 5' não Traduzidas/genética , Ácido Abscísico/genética , Proteínas de Arabidopsis/genética , Dioxigenases/genética , Secas , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Regiões Promotoras Genéticas/genética , Estresse Fisiológico/fisiologia , Fatores de Transcrição/genética , Ativação Transcricional/genética
15.
J Exp Bot ; 71(18): 5469-5483, 2020 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-32474603

RESUMO

The function of the transcription factor KNOTTED ARABIDOPSIS THALIANA7 (KNAT7) is still unclear since it appears to be either a negative or a positive regulator for secondary cell wall deposition with its loss-of-function mutant displaying thicker interfascicular and xylary fiber cell walls but thinner vessel cell walls in inflorescence stems. To explore the exact function of KNAT7, class II KNOTTED1-LIKE HOMEOBOX (KNOX II) genes in Arabidopsis including KNAT3, KNAT4, and KNAT5 were studied together. By chimeric repressor technology, we found that both KNAT3 and KNAT7 repressors exhibited a similar dwarf phenotype. Both KNAT3 and KNAT7 genes were expressed in the inflorescence stems and the knat3 knat7 double mutant exhibited a dwarf phenotype similar to the repressor lines. A stem cross-section of knat3 knat7 displayed an enhanced irregular xylem phenotype as compared with the single mutants, and its cell wall thickness in xylem vessels and interfascicular fibers was significantly reduced. Analysis of cell wall chemical composition revealed that syringyl lignin was significantly decreased while guaiacyl lignin was increased in the knat3 knat7 double mutant. Coincidently, the knat3 knat7 transcriptome showed that most lignin pathway genes were activated, whereas the syringyl lignin-related gene Ferulate 5-Hydroxylase (F5H) was down-regulated. Protein interaction analysis revealed that KNAT3 and KNAT7 can form a heterodimer, and KNAT3, but not KNAT7, can interact with the key secondary cell wall formation transcription factors NST1/2, which suggests that the KNAT3-NST1/2 heterodimer complex regulates F5H to promote syringyl lignin synthesis. These results indicate that KNAT3 and KNAT7 synergistically work together to promote secondary cell wall biosynthesis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Parede Celular/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Lignina , Proteínas Nucleares , Proteínas Repressoras/metabolismo , Fatores de Transcrição/genética
16.
Plant Cell ; 29(1): 54-69, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28011694

RESUMO

Many plant species display remarkable developmental plasticity and regenerate new organs after injury. Local signals produced by wounding are thought to trigger organ regeneration but molecular mechanisms underlying this control remain largely unknown. We previously identified an AP2/ERF transcription factor WOUND INDUCED DEDIFFERENTIATION1 (WIND1) as a central regulator of wound-induced cellular reprogramming in plants. In this study, we demonstrate that WIND1 promotes callus formation and shoot regeneration by upregulating the expression of the ENHANCER OF SHOOT REGENERATION1 (ESR1) gene, which encodes another AP2/ERF transcription factor in Arabidopsis thaliana The esr1 mutants are defective in callus formation and shoot regeneration; conversely, its overexpression promotes both of these processes, indicating that ESR1 functions as a critical driver of cellular reprogramming. Our data show that WIND1 directly binds the vascular system-specific and wound-responsive cis-element-like motifs within the ESR1 promoter and activates its expression. The expression of ESR1 is strongly reduced in WIND1-SRDX dominant repressors, and ectopic overexpression of ESR1 bypasses defects in callus formation and shoot regeneration in WIND1-SRDX plants, supporting the notion that ESR1 acts downstream of WIND1. Together, our findings uncover a key molecular pathway that links wound signaling to shoot regeneration in plants.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Brotos de Planta/genética , Fatores de Transcrição/genética , Ativação Transcricional , Arabidopsis/metabolismo , Arabidopsis/fisiologia , Proteínas de Arabidopsis/metabolismo , Microscopia Confocal , Brotos de Planta/metabolismo , Brotos de Planta/fisiologia , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas/genética , Ligação Proteica , Regeneração/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/genética , Técnicas de Cultura de Tecidos , Fatores de Transcrição/metabolismo
17.
PLoS Genet ; 13(6): e1006856, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28628608

RESUMO

Photoperiod is one of the most reliable environmental cues for plants to regulate flowering timing. In Arabidopsis thaliana, CONSTANS (CO) transcription factor plays a central role in regulating photoperiodic flowering. In contrast to posttranslational regulation of CO protein, still little was known about CO transcriptional regulation. Here we show that the CINCINNATA (CIN) clade of class II TEOSINTE BRANCHED 1/ CYCLOIDEA/ PROLIFERATING CELL NUCLEAR ANTIGEN FACTOR (TCP) proteins act as CO activators. Our yeast one-hybrid analysis revealed that class II CIN-TCPs, including TCP4, bind to the CO promoter. TCP4 induces CO expression around dusk by directly associating with the CO promoter in vivo. In addition, TCP4 binds to another flowering regulator, GIGANTEA (GI), in the nucleus, and induces CO expression in a GI-dependent manner. The physical association of TCP4 with the CO promoter was reduced in the gi mutant, suggesting that GI may enhance the DNA-binding ability of TCP4. Our tandem affinity purification coupled with mass spectrometry (TAP-MS) analysis identified all class II CIN-TCPs as the components of the in vivo TCP4 complex, and the gi mutant did not alter the composition of the TCP4 complex. Taken together, our results demonstrate a novel function of CIN-TCPs as photoperiodic flowering regulators, which may contribute to coordinating plant development with flowering regulation.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Ligação a DNA/genética , Flores/genética , Fatores de Transcrição/genética , Transcrição Gênica , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Ritmo Circadiano/genética , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Mutação , Fotoperíodo , Desenvolvimento Vegetal/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Regiões Promotoras Genéticas
18.
Plant Cell ; 28(6): 1250-62, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27194709

RESUMO

Cell differentiation is a complex process involving multiple steps, from initial cell fate specification to final differentiation. Procambial/cambial cells, which act as vascular stem cells, differentiate into both xylem and phloem cells during vascular development. Recent studies have identified regulatory cascades for xylem differentiation. However, the molecular mechanism underlying phloem differentiation is largely unexplored due to technical challenges. Here, we established an ectopic induction system for phloem differentiation named Vascular Cell Induction Culture System Using Arabidopsis Leaves (VISUAL). Our results verified similarities between VISUAL-induced Arabidopsis thaliana phloem cells and in vivo sieve elements. We performed network analysis using transcriptome data with VISUAL to dissect the processes underlying phloem differentiation, eventually identifying a factor involved in the regulation of the master transcription factor gene APL Thus, our culture system opens up new avenues not only for genetic studies of phloem differentiation, but also for future investigations of multidirectional differentiation from vascular stem cells.


Assuntos
Arabidopsis/citologia , Arabidopsis/metabolismo , Folhas de Planta/citologia , Folhas de Planta/metabolismo , Proteínas de Arabidopsis/metabolismo , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Floema/citologia , Floema/metabolismo , Xilema/citologia , Xilema/metabolismo
19.
Proc Natl Acad Sci U S A ; 113(15): 4218-23, 2016 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-27035938

RESUMO

Stomatal movements regulate gas exchange, thus directly affecting the efficiency of photosynthesis and the sensitivity of plants to air pollutants such as ozone. The GARP family transcription factors GOLDEN 2-LIKE1 (GLK1) and GLK2 have known functions in chloroplast development. Here, we show that Arabidopsis thaliana (A. thaliana) plants expressing the chimeric repressors for GLK1 and -2 (GLK1/2-SRDX) exhibited a closed-stomata phenotype and strong tolerance to ozone. By contrast, plants that overexpress GLK1/2 exhibited an open-stomata phenotype and higher sensitivity to ozone. The plants expressing GLK1-SRDX had reduced expression of the genes for inwardly rectifying K(+) (K(+) in) channels and reduced K(+) in channel activity. Abscisic acid treatment did not affect the stomatal phenotype of 35S:GLK1/2-SRDX plants or the transcriptional activity for K(+) in channel gene, indicating that GLK1/2 act independently of abscisic acid signaling. Our results indicate that GLK1/2 positively regulate the expression of genes for K(+) in channels and promote stomatal opening. Because the chimeric GLK1-SRDX repressor driven by a guard cell-specific promoter induced a closed-stomata phenotype without affecting chloroplast development in mesophyll cells, modulating GLK1/2 activity may provide an effective tool to control stomatal movements and thus to confer resistance to air pollutants.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/efeitos dos fármacos , Ozônio/toxicidade , Estômatos de Plantas/fisiologia , Plantas Geneticamente Modificadas/efeitos dos fármacos , Fatores de Transcrição/fisiologia , Poluentes Atmosféricos/toxicidade , Arabidopsis/genética , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Cloroplastos/fisiologia , Regulação da Expressão Gênica de Plantas , Herbicidas/toxicidade , Oxidantes/toxicidade , Paraquat/toxicidade , Estômatos de Plantas/efeitos dos fármacos , Transpiração Vegetal , Plantas Geneticamente Modificadas/fisiologia , Canais de Potássio/fisiologia , Dióxido de Enxofre/toxicidade , Fatores de Transcrição/genética
20.
Plant Physiol ; 175(2): 874-885, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28842549

RESUMO

Sophisticated regulation of gene expression, including microRNAs (miRNAs) and their target genes, is required for leaf differentiation, growth, and senescence. The impact of miR319 and its target TEOSINTE BRANCHED1, CYCLOIDEA, and PROLIFERATING CELL NUCLEAR ANTIGEN BINDING FACTOR (TCP) genes on leaf development has been extensively investigated, but the redundancies of these gene families often interfere with the evaluation of their function and regulation in the developmental context. Here, we present the genetic evidence of the involvement of the MIR319 and TCP gene families in Arabidopsis (Arabidopsis thaliana) leaf development. Single mutations in MIR319A and MIR319B genes moderately inhibited the formation of leaf serrations, whereas double mutations increased the extent of this inhibition and resulted in the formation of smooth leaves. Mutations in MIR319 and gain-of-function mutations in the TCP4 gene conferred resistance against miR319 and impaired the cotyledon boundary and leaf serration formation. These mutations functionally associated with CUP-SHAPED COTYLEDON genes, which regulate the cotyledon boundary and leaf serration formation. In contrast, loss-of-function mutations in miR319-targeted and nontargeted TCP genes cooperatively induced the formation of serrated leaves in addition to changes in the levels of their downstream gene transcript. Taken together, these findings demonstrate that the MIR319 and TCP gene families underlie robust and multilayer control of leaf development. This study also provides a framework toward future researches on redundant miRNAs and transcription factors in Arabidopsis and crop plants.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , MicroRNAs/genética , Fatores de Transcrição/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Cotilédone/genética , Cotilédone/crescimento & desenvolvimento , Cotilédone/fisiologia , Mutação com Perda de Função , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/fisiologia , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA