Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Development ; 148(4)2021 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-33531431

RESUMO

Neural stem cells (NSCs) gradually alter their characteristics during mammalian neocortical development, resulting in the production of various neurons and glial cells, and remain in the postnatal brain as a source of adult neurogenesis. Notch-Hes signaling is a key regulator of stem cell properties in the developing and postnatal brain, and Hes1 is a major effector that strongly inhibits neuronal differentiation and maintains NSCs. To manipulate Hes1 expression levels in NSCs, we generated transgenic (Tg) mice using the Tet-On system. In Hes1-overexpressing Tg mice, NSCs were maintained in both embryonic and postnatal brains, and generation of later-born neurons was prolonged until later stages in the Tg neocortex. Hes1 overexpression inhibited the production of Tbr2+ intermediate progenitor cells but instead promoted the generation of basal radial glia-like cells in the subventricular zone (SVZ) at late embryonic stages. Furthermore, Hes1-overexpressing Tg mice exhibited the expansion of NSCs and enhanced neurogenesis in the SVZ of adult brain. These results indicate that Hes1 overexpression expanded the embryonic NSC pool and led to the expansion of the NSC reservoir in the postnatal and adult brain.


Assuntos
Diferenciação Celular/genética , Células-Tronco Embrionárias/metabolismo , Expressão Gênica , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Neurogênese/genética , Fatores de Transcrição HES-1/genética , Animais , Encéfalo/citologia , Encéfalo/metabolismo , Linhagem Celular , Proliferação de Células , Células Cultivadas , Eletroporação , Células-Tronco Embrionárias/citologia , Imunofluorescência , Hibridização In Situ , Camundongos , Camundongos Transgênicos , Neurônios/citologia , Neurônios/metabolismo , Fatores de Transcrição HES-1/metabolismo
2.
Genes Dev ; 30(1): 102-16, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26728556

RESUMO

Notch signaling regulates tissue morphogenesis through cell-cell interactions. The Notch effectors Hes1 and Hes7 are expressed in an oscillatory manner and regulate developmental processes such as neurogenesis and somitogenesis, respectively. Expression of the mRNA for the mouse Notch ligand Delta-like1 (Dll1) is also oscillatory. However, the dynamics of Dll1 protein expression are controversial, and their functional significance is unknown. Here, we developed a live-imaging system and found that Dll1 protein expression oscillated in neural progenitors and presomitic mesoderm cells. Notably, when Dll1 expression was accelerated or delayed by shortening or elongating the Dll1 gene, Dll1 oscillations became severely dampened or quenched at intermediate levels, as modeled mathematically. Under this condition, Hes1 and Hes7 oscillations were also dampened. In the presomitic mesoderm, steady Dll1 expression led to severe fusion of somites and their derivatives, such as vertebrae and ribs. In the developing brain, steady Dll1 expression inhibited proliferation of neural progenitors and accelerated neurogenesis, whereas optogenetic induction of Dll1 oscillation efficiently maintained neural progenitors. These results indicate that the appropriate timing of Dll1 expression is critical for the oscillatory networks and suggest the functional significance of oscillatory cell-cell interactions in tissue morphogenesis.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Morfogênese/fisiologia , Neurônios/metabolismo , Células-Tronco/metabolismo , Animais , Proteínas de Ligação ao Cálcio , Comunicação Celular , Proliferação de Células , Células Cultivadas , Técnicas de Introdução de Genes , Mesoderma/citologia , Mesoderma/embriologia , Mesoderma/metabolismo , Camundongos , Modelos Biológicos , Mutação , Neurogênese/genética , Neurônios/citologia , Receptores Notch/genética , Transdução de Sinais/genética , Somitos/embriologia , Células-Tronco/citologia , Imagem com Lapso de Tempo
3.
Genes Cells ; 26(6): 399-410, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33811429

RESUMO

An expanded and folded neocortex is characteristic of higher mammals, including humans and other primates. The neocortical surface area was dramatically enlarged during the course of mammalian brain evolution from lissencephalic to gyrencephalic mammals, and this bestowed higher cognitive functions especially to primates, including humans. In this study, we generated transgenic (Tg) mice in which the expression of Sonic hedgehog (Shh) could be controlled in neural stem cells (NSCs) and neural progenitors by using the Tet-on system. Shh overexpression during embryogenesis promoted the symmetric proliferative division of NSCs in the neocortical region, leading to the expansion of lateral ventricles and tangential extension of the ventricular zone. Moreover, Shh-overexpressing Tg mice showed dramatic expansion of the neocortical surface area and exhibited a wrinkled brain when overexpression was commenced at early stages of neural development. These results indicate that Shh is able to increase the neocortical NSCs and contribute to expansion of the neocortex.


Assuntos
Proteínas Hedgehog/metabolismo , Neocórtex/metabolismo , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Animais , Biomarcadores/metabolismo , Diferenciação Celular , Proliferação de Células , Ventrículos Cerebrais/metabolismo , Regulação da Expressão Gênica , Camundongos Transgênicos , Neurônios/citologia , Transdução de Sinais
4.
Semin Cell Dev Biol ; 95: 4-11, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-30634047

RESUMO

In the developing mammalian neocortex, neural stem cells (NSCs) gradually alter their characteristics as development proceeds. NSCs initially expand the progenitor pool by symmetric proliferative division and then shift to asymmetric neurogenic division to commence neurogenesis. NSCs sequentially give rise to deep layer neurons first and superficial layer neurons later through mid- to late-embryonic stages, followed by shifting to a gliogenic phase at perinatal stages. The precise mechanisms regulating developmental timing of the transition from symmetric to asymmetric division have not been fully elucidated; however, gradual elongation in cell cycle length and concomitant accumulation of determinants that promote neuronal differentiation may function as a biological clock that regulates the onset of asymmetric neurogenic division. On the other hand, epigenetic regulatory systems have been implicated in the regulation of transition timing of neurogenesis and gliogenesis; the polycomb group (PcG) complex and Hmga genes have been found to govern the developmental timing by modulating chromatin structure during neocortical development. Furthermore, we uncovered several factors and mechanisms underlying the regulation of timing of neocortical neurogenesis and gliogenesis. In this review, we discuss recent findings regarding the mechanisms that govern the temporal properties of NSCs and the precise transition timing during neocortical development.


Assuntos
Mamíferos/embriologia , Neocórtex/embriologia , Células-Tronco Neurais/citologia , Neurogênese , Neuroglia/citologia , Animais , Humanos , Fatores de Tempo
5.
Development ; 144(17): 3156-3167, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28851724

RESUMO

During mammalian neocortical development, neural stem/progenitor cells (NSCs) sequentially give rise to deep layer neurons and superficial layer neurons through mid- to late-embryonic stages, shifting to gliogenic phase at perinatal stages. Previously, we found that the Hes genes inhibit neuronal differentiation and maintain NSCs. Here, we generated transgenic mice that overexpress Hes5 in NSCs of the central nervous system, and found that the transition timing from deep to superficial layer neurogenesis was shifted earlier, while gliogenesis precociously occurred in the developing neocortex of Hes5-overexpressing mice. By contrast, the transition from deep to superficial layer neurogenesis and the onset of gliogenesis were delayed in Hes5 knockout (KO) mice. We found that the Hmga genes (Hmga1/2) were downregulated in the neocortical regions of Hes5-overexpressing brain, whereas they were upregulated in the Hes5 KO brain. Furthermore, we found that Hes5 expression led to suppression of Hmga1/2 promoter activity. These results suggest that Hes5 regulates the transition timing between phases for specification of neocortical neurons and between neurogenesis and gliogenesis, accompanied by alteration in the expression levels of Hgma genes, in mammalian neocortical development.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Mamíferos/embriologia , Neocórtex/embriologia , Neocórtex/metabolismo , Neurogênese/genética , Proteínas Repressoras/metabolismo , Animais , Astrócitos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Diferenciação Celular , Proliferação de Células , Regulação para Baixo/genética , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Genes Reporter , Mamíferos/genética , Camundongos Transgênicos , Células-Tronco Neurais/metabolismo , Neuroglia/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Regiões Promotoras Genéticas/genética , Proteínas Repressoras/genética , Fatores de Tempo
6.
Development ; 142(13): 2278-90, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-26041766

RESUMO

In the developing mammalian brain, neural stem cells (NSCs) initially expand the progenitor pool by symmetric divisions. NSCs then shift from symmetric to asymmetric division and commence neurogenesis. Although the precise mechanisms regulating the developmental timing of this transition have not been fully elucidated, gradual elongation in the length of the cell cycle and coinciding accumulation of determinants that promote neuronal differentiation might function as a biological clock that regulates the onset of asymmetric division and neurogenesis. We conducted gene expression profiling of embryonic NSCs in the cortical regions and found that expression of high mobility group box transcription factor 1 (Hbp1) was upregulated during neurogenic stages. Induced conditional knockout mice of Hbp1, generated by crossing with Nestin-CreER(T2) mice, exhibited a remarkable dilatation of the telencephalic vesicles with a tangentially expanded ventricular zone and a thinner cortical plate containing reduced numbers of neurons. In these Hbp1-deficient mouse embryos, neural stem/progenitor cells continued to divide with a shorter cell cycle length. Moreover, downstream target genes of the Wnt signaling, such as cyclin D1 (Ccnd1) and c-jun (Jun), were upregulated in the germinal zone of the cortical regions. These results indicate that Hbp1 plays a crucial role in regulating the timing of cortical neurogenesis by elongating the cell cycle and that it is essential for normal cortical development.


Assuntos
Ciclo Celular , Diferenciação Celular , Proteínas de Grupo de Alta Mobilidade/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Proteínas Repressoras/metabolismo , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Ciclo Celular/genética , Diferenciação Celular/genética , Movimento Celular/genética , Proliferação de Células , Córtex Cerebral/citologia , Córtex Cerebral/crescimento & desenvolvimento , Ciclina D1/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Proteínas de Grupo de Alta Mobilidade/deficiência , Proteínas de Grupo de Alta Mobilidade/genética , Camundongos Endogâmicos ICR , Camundongos Knockout , Morfogênese , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Neurogênese/genética , Proteínas Repressoras/deficiência , Proteínas Repressoras/genética , Proteína do Retinoblastoma/metabolismo , Fatores de Tempo , Regulação para Cima/genética
7.
PLoS Genet ; 11(9): e1005503, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26355680

RESUMO

Leucine-rich repeat kinase 2 (LRRK2) is a key molecule in the pathogenesis of familial and idiopathic Parkinson's disease (PD). We have identified two novel LRRK2-associated proteins, a HECT-type ubiquitin ligase, HERC2, and an adaptor-like protein with six repeated Neuralized domains, NEURL4. LRRK2 binds to NEURL4 and HERC2 via the LRRK2 Ras of complex proteins (ROC) domain and NEURL4, respectively. HERC2 and NEURL4 link LRRK2 to the cellular vesicle transport pathway and Notch signaling, through which the LRRK2 complex promotes the recycling of the Notch ligand Delta-like 1 (Dll1)/Delta (Dl) through the modulation of endosomal trafficking. This process negatively regulates Notch signaling through cis-inhibition by stabilizing Dll1/Dl, which accelerates neural stem cell differentiation and modulates the function and survival of differentiated dopaminergic neurons. These effects are strengthened by the R1441G ROC domain-mutant of LRRK2. These findings suggest that the alteration of Notch signaling in mature neurons is a component of PD etiology linked to LRRK2.


Assuntos
Endossomos/metabolismo , Doença de Parkinson/enzimologia , Proteínas Serina-Treonina Quinases/fisiologia , Receptores Notch/metabolismo , Transdução de Sinais/fisiologia , Animais , Proteínas de Transporte/metabolismo , Dopamina/metabolismo , Drosophila , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Células HEK293 , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Ligação Proteica , Proteínas Serina-Treonina Quinases/metabolismo , Ubiquitina-Proteína Ligases
8.
Development ; 139(6): 1071-82, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22318232

RESUMO

Notch signaling regulates intestinal development, homeostasis and tumorigenesis, but its precise downstream mechanism remains largely unknown. Here we found that inactivation of the Notch effectors Hes1, Hes3 and Hes5, but not Hes1 alone, led to reduced cell proliferation, increased secretory cell formation and altered intestinal structures in adult mice. However, in Apc mutation-induced intestinal tumors, inactivation of Hes1 alone was sufficient for reducing tumor cell proliferation and inducing differentiation of tumor cells into all types of intestinal epithelial cells, but without affecting the homeostasis of normal crypts owing to genetic redundancy. These results indicated that Hes genes cooperatively regulate intestinal development and homeostasis and raised the possibility that Hes1 is a promising target to induce the differentiation of tumor cells.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Proteínas de Homeodomínio/genética , Neoplasias Intestinais/genética , Intestino Grosso/crescimento & desenvolvimento , Intestino Delgado/crescimento & desenvolvimento , Proteínas do Tecido Nervoso/genética , Proteínas Repressoras/genética , Animais , Diferenciação Celular/genética , Movimento Celular , Proliferação de Células , Transformação Celular Neoplásica , Células Epiteliais/metabolismo , Genes APC , Neoplasias Intestinais/patologia , Intestino Grosso/citologia , Intestino Grosso/metabolismo , Intestino Grosso/patologia , Intestino Delgado/citologia , Intestino Delgado/metabolismo , Intestino Delgado/patologia , Camundongos , Camundongos Knockout , Receptores Notch/genética , Receptores Notch/metabolismo , Transdução de Sinais , Células-Tronco/metabolismo , Fatores de Transcrição HES-1
9.
Development ; 139(20): 3806-16, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22991445

RESUMO

In the developing brain, neural progenitor cells switch differentiation competency by changing gene expression profiles that are governed partly by epigenetic control, such as histone modification, although the precise mechanism is unknown. Here we found that ESET (Setdb1), a histone H3 Lys9 (H3K9) methyltransferase, is highly expressed at early stages of mouse brain development but downregulated over time, and that ablation of ESET leads to decreased H3K9 trimethylation and the misregulation of genes, resulting in severe brain defects and early lethality. In the mutant brain, endogenous retrotransposons were derepressed and non-neural gene expression was activated. Furthermore, early neurogenesis was severely impaired, whereas astrocyte formation was enhanced. We conclude that there is an epigenetic role of ESET in the temporal and tissue-specific gene expression that results in proper control of brain development.


Assuntos
Encéfalo/embriologia , Células-Tronco Neurais/metabolismo , Neurogênese , Proteínas Metiltransferases/metabolismo , Animais , Astrócitos/metabolismo , Sequência de Bases , Encéfalo/metabolismo , Diferenciação Celular , Proliferação de Células , Regulação para Baixo , Epigênese Genética , Neurônios GABAérgicos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Histona-Lisina N-Metiltransferase , Camundongos , Camundongos Transgênicos , Proteínas Metiltransferases/deficiência , Proteínas Metiltransferases/genética , Retroelementos , Análise de Sequência de RNA
10.
Cell Mol Life Sci ; 70(12): 2045-57, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22971775

RESUMO

Notch signaling plays crucial roles in fate determination and the differentiation of neural stem cells in embryonic and adult brains. It is now clear that the notch pathway is under more complex and dynamic regulation than previously thought. To understand the functional details of notch signaling more precisely, it is important to reveal when, where, and how notch signaling is dynamically communicated between cells, for which the visualization of notch signaling is essential. In this review, we introduce recent technical advances in the visualization of notch signaling during neural development and in the adult brain, and we discuss the physiological significance of dynamic regulation of notch signaling.


Assuntos
Encéfalo/embriologia , Encéfalo/crescimento & desenvolvimento , Regulação da Expressão Gênica/fisiologia , Neurogênese/fisiologia , Receptores Notch/metabolismo , Transdução de Sinais/fisiologia , Animais , Regulação da Expressão Gênica/genética , Proteínas de Fluorescência Verde , Humanos , Luciferases , Camundongos , Camundongos Transgênicos , Modelos Biológicos , Neurogênese/genética , Receptores Notch/genética , Transdução de Sinais/genética , beta-Galactosidase
11.
Proc Natl Acad Sci U S A ; 108(8): 3300-5, 2011 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-21300886

RESUMO

Proper timing of gene expression is essential for many biological events, but the molecular mechanisms that control timing remain largely unclear. It has been suggested that introns contribute to the timing mechanisms of gene expression, but this hypothesis has not been tested with natural genes. One of the best systems for examining the significance of introns is the oscillator network in the somite segmentation clock, because mathematical modeling predicted that oscillating expression depends on negative feedback with a delayed timing. The basic helix-loop-helix repressor gene Hes7 is cyclically expressed in the presomitic mesoderm (PSM) and regulates the somite segmentation. Here, we found that introns lead to an ∼19-min delay in the Hes7 gene expression, and mathematical modeling suggested that without such a delay, Hes7 oscillations would be abolished. To test this prediction, we generated mice carrying the Hes7 locus whose introns were removed. In these mice, Hes7 expression did not oscillate but occurred steadily, leading to severe segmentation defects. These results indicate that introns are indeed required for Hes7 oscillations and point to the significance of intronic delays in dynamic gene expression.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/fisiologia , Relógios Biológicos , Expressão Gênica , Íntrons/fisiologia , Animais , Retroalimentação Fisiológica , Camundongos , Modelos Biológicos , Somitos
12.
Proc Natl Acad Sci U S A ; 108(20): 8479-84, 2011 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-21536899

RESUMO

Although the functional significance of adult neurogenesis in hippocampal-dependent learning and memory has been well documented, the role of such neurogenesis in olfactory activity is rather obscure. To understand the significance of adult neurogenesis in olfactory functions, we genetically ablated newly born neurons by using tamoxifen-treated Nestin-CreER(T2);neuron-specific enolase-diphtheria toxin fragment A (NSE-DTA) mice. In these mice, tamoxifen-inducible Cre recombinase allows the NSE (Eno2) gene to drive DTA expression in differentiating neurons, leading to the efficient ablation of newly born neurons in the forebrain. These mutant mice were capable of discriminating odors as competently as control mice. Strikingly, although control and mutant mice frequently showed freezing behaviors to a fox scent, a predator odor, mutant mice approached this odor when they were conditioned to associate the odor with a reward, whereas control mice did not approach the odor. Furthermore, although mutant males and females showed normal social recognition behaviors to other mice of a different sex, mutant males displayed deficits in male-male aggression and male sexual behaviors toward females, whereas mutant females displayed deficits in fertility and nurturing, indicating that sex-specific activities, which are known to depend on olfaction, are impaired. These results suggest that continuous neurogenesis is required for predator avoidance and sex-specific responses that are olfaction dependent and innately programmed.


Assuntos
Envelhecimento , Discriminação Psicológica/fisiologia , Neurogênese/fisiologia , Percepção Olfatória/fisiologia , Prosencéfalo/fisiologia , Animais , Condicionamento Clássico/fisiologia , Feminino , Reação de Congelamento Cataléptica , Hipocampo/fisiologia , Masculino , Camundongos , Camundongos Mutantes , Olfato/fisiologia
13.
Sci Rep ; 14(1): 11359, 2024 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-38762530

RESUMO

Around one-third of the world's most carbon-rich ecosystems, mangrove forests, have already been destroyed in Thailand owing to coastal development and aquaculture. Improving these degraded areas through mangrove plantations can restore various coastal ecosystem services, including CO2 absorption and protection against wave action. This study examines the biomass of three coastal mangrove plantations (Avicennia alba) of different ages in Samut Prakarn province, Central Thailand. Our aim was to understand the forest biomass recovery during the early stages of development, particularly fine root biomass expansion. In the chronosequence of the mangrove plantations, woody biomass increased by 40% over four years from 79.7 ± 11.2 Mg C ha-1 to 111.7 ± 12.3 Mg C ha-1. Fine root biomass up to a depth of 100 cm was 4.47 ± 0.33 Mg C ha-1, 4.24 ± 0.63 Mg C ha-1, and 6.92 ± 0.32 Mg C ha-1 at 10, 12, and 14 year-old sites, respectively. Remarkably, the fine root biomass of 14-year-old site was significantly higher than those of the younger sites due to increase of the biomass at 15-30 cm and 30-50 cm depths. Our findings reveal that the biomass recovery in developing mangrove plantations exhibit rapid expansion of fine roots in deeper soil layers.


Assuntos
Biomassa , Raízes de Plantas , Áreas Alagadas , Tailândia , Raízes de Plantas/crescimento & desenvolvimento , Avicennia/crescimento & desenvolvimento , Ecossistema , Conservação dos Recursos Naturais/métodos , Carbono/análise , Carbono/metabolismo
14.
Genes Cells ; 17(12): 952-61, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23134481

RESUMO

Earlier studies show that Hes1 expression is oscillatory in neural stem cells but sustained and high in the roof plate and the floor plate, and that such different dynamics of Hes1 expression (oscillatory versus sustained) regulate different proliferation and differentiation characteristics of these cells (active in neural stem cells but rather dormant in roof/floor plate cells). The mechanism of how different dynamics of Hes1 expression is controlled remains to be determined. Here, we found that the seed sequence of microRNA-9 (miR-9) is complementary to the 3'-UTR sequence of Hes1 mRNA. MiR-9 is highly expressed in the ventricular zone of the developing brain, which contains neural stem cells, but it is not expressed in the roof plate or the floor plate. Over-expression of miR-9 negatively regulates the Hes1 protein expression by interacting with the 3'-UTR of Hes1 mRNA, thereby inducing cell cycle exit and neuronal differentiation. Conversely, knockdown of miR-9 inhibits neuronal differentiation. Furthermore, knockdown of miR-9 inhibits the oscillatory expression of Hes1 mRNA in neural stem cells. These results indicate that miR-9 regulates the proliferation and differentiation of neural stem cells by controlling the dynamics of Hes1 expression in the developing brain.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Encéfalo/metabolismo , Diferenciação Celular , Proteínas de Homeodomínio/metabolismo , MicroRNAs/metabolismo , Células-Tronco Neurais/metabolismo , Regiões 3' não Traduzidas , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Encéfalo/embriologia , Ciclo Celular , Proliferação de Células , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Camundongos , MicroRNAs/genética , Células NIH 3T3 , Células-Tronco Neurais/citologia , Neurônios/citologia , Neurônios/metabolismo , RNA Mensageiro/biossíntese , Ratos , Fatores de Transcrição HES-1
15.
Glia ; 60(10): 1495-505, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22714260

RESUMO

The basic helix-loop-helix (bHLH) transcription factor Ascl1 plays crucial roles in both oligodendrocyte development and neuronal development; however, the molecular target of Ascl1 in oligodendrocyte progenitor cells (OPCs) remains elusive. To identify the downstream targets of Ascl1 in OPCs, we performed gene expression microarray analysis and identified Hes5 as a putative downstream target of Ascl1. In vivo analysis revealed that Ascl1 and Hes5 were coexpressed in early developmental oligodendrocytes in both the telencephalon and the ventral spinal cord. We also found that Hes5 expression was reduced in the OPCs of Ascl1 mutant mice. Furthermore, we demonstrated that Ascl1 directly binds to an E-box region within the Hes5 promoter and regulates Hes5 expression at the transcriptional level. Taken together, these in vivo and in vitro data suggest that Ascl1 induces Hes5 expression in a cell-autonomous manner. Considering the previously known function of Hes5 as a repressor of Ascl1, our data indicate that Hes5 is involved in the negative feedback regulation of Ascl1.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Oligodendroglia/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Células Cultivadas , Imunoprecipitação da Cromatina , Embrião de Mamíferos , Feminino , Galactosilceramidase/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Camundongos , Camundongos Transgênicos , Mutação/genética , Proteínas do Tecido Nervoso/metabolismo , Fator de Transcrição 2 de Oligodendrócitos , Oligodendroglia/efeitos dos fármacos , Gravidez , RNA Interferente Pequeno/farmacologia , Ratos , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Células-Tronco/metabolismo , Transfecção
16.
Stem Cells ; 29(11): 1817-28, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21898698

RESUMO

During mammalian brain development, neural stem cells transform from neuroepithelial cells to radial glial cells and finally remain as astrocyte-like cells in the postnatal and adult brain. Neuroepithelial cells divide symmetrically and expand the neural stem cell pool; after the onset of neurogenesis, radial glial cells sequentially produce deep layer neurons and then superficial layer neurons by asymmetric, self-renewing divisions during cortical development. Thereafter, gliogenesis supersedes neurogenesis, while a subset of neural stem cells retain their stemness and lurk in the postnatal and adult brain. Thus, neural stem cells undergo alterations in morphology and the capacity to proliferate or give rise to various types of neural cells in a temporally regulated manner. To shed light on the temporal alterations of embryonic neural stem cells, we sorted the green fluorescent protein-positive cells from the dorsolateral telencephalon (neocortical region) of pHes1-d2EGFP transgenic mouse embryos at different developmental stages and performed gene expression profiling. Among dozens of transcription factors differentially expressed by cells in the ventricular zone during the course of development, several of them exhibited the activity to inhibit neuronal differentiation when overexpressed. Furthermore, knockdown of Tcf3 or Klf15 led to accelerated neuronal differentiation of neural stem cells in the developing cortex, and neurospheres originated from Klf15 knockdown cells mostly lacked neurogenic activities and only retained gliogenic activities. These results suggest that Tcf3 and Klf15 play critical roles in the maintenance of neural stem cells at early and late embryonic stages, respectively.


Assuntos
Diferenciação Celular/fisiologia , Perfilação da Expressão Gênica/métodos , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Animais , Diferenciação Celular/genética , Movimento Celular/genética , Movimento Celular/fisiologia , Células Cultivadas , Hibridização In Situ , Camundongos , Camundongos Transgênicos , Análise de Sequência com Séries de Oligonucleotídeos
17.
Neurosci Res ; 176: 18-30, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34600946

RESUMO

The expansion of the neocortex represents a characteristic event over the course of mammalian evolution. Gyrencephalic mammals that have the larger brains with many folds (gyri and sulci) seem to have acquired higher intelligence, reflective of the enlargement of the neocortical surface area. In this process, germinal layers containing neural stem cells (NSCs) and neural progenitors expanded in number, leading to an increase in the total number of cortical neurons. In this study, we sought to expand neural stem/progenitor cells and enlarge the neocortical surface area by the dual activation of Shh and Notch signaling in transgenic (Tg) mice, promoting the proliferation of neural stem/progenitor cells by the Shh signaling effector while maintaining the undifferentiated state of NSCs by the Notch signaling effector. In the neocortical region of the Tg embryos, NSCs increased in number, and the ventricles, ventricular zone, and neocortical surface area were dramatically expanded. Furthermore, we observed that folds/wrinkles on the neocortical surface were progressively formed, accompanied by the vascular formation. These findings suggest that Shh and Notch signaling may be key regulators of mammalian brain evolution.


Assuntos
Neocórtex , Células-Tronco Neurais , Animais , Diferenciação Celular/fisiologia , Proteínas Hedgehog/metabolismo , Mamíferos , Camundongos , Neocórtex/metabolismo , Neurônios/metabolismo , Receptores Notch/metabolismo , Transdução de Sinais/fisiologia
18.
Neurosci Res ; 177: 38-51, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34968558

RESUMO

The choroid plexus (ChP) is the center of soluble factor secretion into the cerebrospinal fluid in the central nervous system. It is known that various signaling factors secreted from the ChP are involved in the regulation of brain development and homeostasis. Intriguingly, the size of the ChP was prominently expanded in the brains of primates, including humans, suggesting that the expansion of the ChP contributed to mammalian brain evolution, leading to the acquisition of higher intelligence and cognitive functions. To address this hypothesis, we established transgenic (Tg) systems using regulatory elements that direct expression of candidate genes in the ChP. Overexpression of sonic hedgehog (Shh) in the developing ChP led to the expansion of the ChP with greater arborization. Shh produced in the ChP caused an increase in neural stem cells (NSCs) in the neocortical region, leading to the expansion of ventricles, ventricular zone and neocortical surface area, and neocortical surface folding. These findings suggest that the activation of Shh signaling via its enhanced secretion from the developing ChP contributed to the evolution of the neocortex. Furthermore, we found that Shh produced in the ChP enhanced NSC proliferation in the postnatal Tg brain, demonstrating that our Tg system can be used to estimate the effects of candidate factors secreted from the ChP on various aspects of brain morphogenesis and functions.


Assuntos
Plexo Corióideo , Neocórtex , Animais , Animais Geneticamente Modificados , Plexo Corióideo/metabolismo , Expressão Gênica , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Ventrículos Laterais , Mamíferos , Neocórtex/metabolismo
19.
J Cell Biol ; 173(3): 333-9, 2006 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-16651378

RESUMO

Melanoblasts (Mbs) are thought to be strictly regulated by cell-cell interactions with epidermal keratinocytes, although the precise molecular mechanism of the regulation has been elusive. Notch signaling, whose activation is mediated by cell-cell interactions, is implicated in a broad range of developmental processes. We demonstrate the vital role of Notch signaling in the maintenance of Mbs, as well as melanocyte stem cells (MSCs). Conditional ablation of Notch signaling in the melanocyte lineage leads to a severe defect in hair pigmentation, followed by intensive hair graying. The defect is caused by a dramatic elimination of Mbs and MSCs. Furthermore, targeted overexpression of Hes1 is sufficient to protect Mbs from the elimination by apoptosis. Thus, these data provide evidence that Notch signaling, acting through Hes1, plays a crucial role in the survival of immature Mbs by preventing initiation of apoptosis.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/fisiologia , Proteínas de Homeodomínio/fisiologia , Melanócitos/citologia , Receptores Notch/fisiologia , Transdução de Sinais/fisiologia , Células-Tronco/citologia , Animais , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Proteínas de Ciclo Celular/genética , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Dipeptídeos/farmacologia , Inibidores Enzimáticos/farmacologia , Células Epidérmicas , Epiderme/embriologia , Epiderme/metabolismo , Expressão Gênica/genética , Cor de Cabelo/genética , Proteínas de Homeodomínio/genética , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/genética , Oxirredutases Intramoleculares/metabolismo , Proteína Jagged-2 , Melanócitos/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Nus , Camundongos Transgênicos , Receptor Notch1/metabolismo , Células-Tronco/metabolismo , Fatores de Transcrição HES-1
20.
Nat Neurosci ; 10(7): 838-45, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17558399

RESUMO

We report that during cortical development in the mouse embryo, reversion-inducing cysteine-rich protein with Kazal motifs (RECK) critically regulates Notch signaling by antagonizing the ectodomain shedding of Notch ligands, which is mediated by a disintegrin and metalloproteinase domain 10 (ADAM10). In the embryonic brain, RECK is specifically expressed in Nestin-positive neural precursor cells (NPCs). Reck-deficient NPCs undergo precocious differentiation that is associated with downregulated Nestin expression, impaired Notch signaling and defective self-renewal. These phenotypes were substantially rescued either by enhancing Notch signaling or by suppressing endogenous ADAM10 activity. Consequently, we found that RECK regulates the ectodomain shedding of Notch ligands by directly inhibiting the proteolytic activity of ADAM10. This mechanism appeared to be essential for Notch ligands to properly induce Notch signaling in neighboring cells. These findings indicate that RECK is a physiological inhibitor of ADAM10, an upstream regulator of Notch signaling and a critical modulator of brain development.


Assuntos
Proteínas ADAM/fisiologia , Secretases da Proteína Precursora do Amiloide/fisiologia , Córtex Cerebral/citologia , Córtex Cerebral/crescimento & desenvolvimento , Glicoproteínas de Membrana/fisiologia , Proteínas de Membrana/fisiologia , Neurônios/fisiologia , Receptores Notch/fisiologia , Transdução de Sinais/fisiologia , Proteína ADAM10 , Animais , Sistema Nervoso Central/crescimento & desenvolvimento , Sistema Nervoso Central/metabolismo , Regulação para Baixo/fisiologia , Feminino , Imunofluorescência , Proteínas Ligadas por GPI , Immunoblotting , Imunoprecipitação , Ligantes , Luciferases/biossíntese , Luciferases/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Plasmídeos/genética , Gravidez , Interferência de RNA , Proteínas Recombinantes/genética , Retroviridae/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA